Preview

Russian Sklifosovsky Journal "Emergency Medical Care"

Advanced search

ADVANTAGES AND DANGERS OF EARLY OSTEOSYNTHESIS OF FEMUR IN POLYTRAUMA WITH CHEST INJUR

https://doi.org/10.23934/2223-9022-2017-6-3-238-245

Abstract

The review presents the results of experimental and clinical studies of the effect of early osteosynthesis in the femoral fracture on the development of systemic complications and the outcome of polytrauma with chest injuries. We explored the role of combination of thoracic injuries with a fracture of the femur, as well as its intramedullary osteosynthesis in the mechanisms of local and systemic inflammatory reaction formation, coagulopathy, fatty embolism and pulmonary embolism, respiratory failure. The concepts of “immediate total care” and “orthopedic damage control” are described with reference to fractures of the femur, combined with a chest trauma. The criteria for the relative safety of osteosynthesis of the femur in polytrauma with thoracic injuries are given.

About the Authors

Y. G. Shapkin
«Saratov State Medical University named after V.I. Razumovsky», Ministry of Health Care, Russian Federation, Saratov
Russian Federation


P. A. Seliverstov
«Saratov State Medical University named after V.I. Razumovsky», Ministry of Health Care, Russian Federation, Saratov
Russian Federation
Cand. Med. Sci., Assistant of General Surgery Department, Saratov State Medical University named after V.I. Razumovsky


References

1. Pfeifer R., Pape H.C. Diagnostics and treatment strategies for multiple trauma patients. Chirurg. 2016; 87(2): 165–175. PMID: 26830303. DOI: 10.1007/s00104-015-0139-0.

2. Sokolov V.A. Multiple and associated injuries. Moscow: GEOTAR-Media Publ., 2006. 512 р. (In Russian).

3. Bondarenko A.V., Gerasimova O.A., Luk’yanov V.V., et al. Composition, structure of injuries, mortality and features of rendering assistance for patients during treatment of polytrauma. Politravma. 2014; (1): 15–28. (In Russian).

4. Samokhvalov I.M., Rud’ A.A., Petrov A.N., et al. Infectious complications in patients with multiple injuries. Zdorov’e. Meditsinskaya ekologiya. Nauka. 2012; 47–48(1–2): 98–99. (In Russian).

5. Agadzhanyan V.V., Kravtsov S.A., Shatalin A.V., Levchenko T.V. Hospital mortality in polytrauma and main directions for its decrease. Politravma. 2015; (1): 6–15. (In Russian).

6. Liu X., Jiang M., Yi C.L., et al. Early intramedullary nailing for femoral fractures in patients with severe thoracic trauma: A systemic review and meta-analysis. Chin J Traumatol. 2016; 19(3): 160–163. PMID: 27321297.

7. Huber S., Biberthaler P., Delhey P. et al. Predictors of poor outcomes after significant chest trauma in multiply injured patients: a retrospective analysis from the German Trauma Registry (Trauma Register DGU®). Scand J Trauma Resusc Emerg Med. 2014; 22: 52 PMID: 25204466. DOI: 10.1186/ s13049-014-0052-4.

8. Peschanskiy R.E., Tantsyura V.P., Dudin A.M., Yaroshchak V.V. Principles of surgical treatment of patients with combined trauma of chest and extremities. Vestnik neotlozhnoy i vosstanovitel’noy meditsiny. 2012; 13(3): 384–386. (In Russian).

9. Willett K., Al-Khateeb H., Kotnis R., et al. Risk of mortality: the relationship with associated injuries and fracture treatment methods in patients with unilateral or bilateral femoral shaft fractures. J Trauma. 2010; 69(2): 405–410. PMID: 20699750. DOI: 10.1097/TA.0b013e3181e6138a.

10. Godzik J., McAndrew C.M., Morshed S. et al. Multiple lower-extremity and pelvic fractures increase pulmonary embolus risk. Orthopedics. 2014; 37(6): e517–524. PMID: 24972431. DOI: 10.3928/01477447-20140528-50.

11. Radevskaya N.S., Ovchinnikov L.V. Prevention of fat embolism syndrome with severe concomitant injuries. Evraziyskiy Soyuz Uchenykh. 2015; (11–1): 159–162. (In Russian).

12. Pankov I.O. Analysis of the causes of deaths of patients with severe skeletal polytrauma. Prakticheskaya meditsina. 2015; 1(4): 157–160. (In Russian).

13. Samokhvalov I.M., Gavrilin S.V., Suprun A.Yu., et al. Implication of pulmonary contusion in the pathogenesis of respiratory disorders in severe concomitant chest trauma. Vestnik anesteziologii i reanimatologii. 2011; 8(5): 11–16. (In Russian).

14. Lane M.K., Nahm N.J., Vallier H.A. Morbidity and mortality of bilateral femur fractures. Orthopedics. 2015; 38(7): e588–592. PMID: 26186320. DOI: 10.3928/01477447-20150701-56.

15. Vallier H.A., Wang X., Moore T.A., et al. Timing of orthopaedic surgery in multiple trauma patients: development of a protocol for early appropriate care. J Orthop Trauma. 2013; 27(10): 543–551. PMID: 23760182. DOI: 10.1097/BOT.0b013e31829efda1.

16. Nahm N.J., Como J.J., Wilber J.H., Vallier H.A. Early appropriate care: definitive stabilization of femoral fractures within 24 hours of injury is safe in most patients with multiple injuries. J Trauma. 2011; 71(1): 175–185. PMID: 21336198. DOI: 10.1097/TA.0b013e3181fc93a2.

17. Dienstknecht T., Rixen D., Giannoudis P., Pape H.C. Do parameters used to clear noncritically injured polytrauma patients for extremity surgery predict complications? Clin Orthop Relat Res. 2013; 471(9): 2878–2884. PMID: 23512748. DOI: 10.1007/s11999-013-2924-8.

18. Fröhlich M., Lefering R., Probst C., et al. Epidemiology and risk factors of multiple-organ failure after multiple trauma: an analysis of 31,154 patients from the Trauma Register DGU. J Trauma Acute Care Surg. 2014; 76(4): 921–928. PMID: 24662853. DOI: 10.1097/TA.0000000000000199.

19. Cannada L.K., Taghizadeh S., Murali J., et al. Retrograde intramedullary nailing in treatment of bilateral femur fractures. J Orthop Trauma. 2008; 22(8): 530–534. PMID: 18758283. DOI: 10.1097/BOT.0b013e318183eb48.

20. Seitz D.H., Perl M., Liener U.C., et al. Inflammatory alterations in a novel combination model of blunt chest trauma and hemorrhagic shock. J Trauma. 2011; 70(1): 189–196. PMID: 20495485. DOI: 10.1097/ TA.0b013e3181d7693c.

21. Mommsen P., Zeckey C., Andruszkow H., et al. Comparison of different thoracic trauma scoring systems in regards to prediction of post-traumatic complications and outcome in blunt chest trauma. J Surg Res. 2012; 176(1): 239–247. PMID: 22099585. DOI: 10.1016/j.jss.2011.09.018.

22. Jin H., Tang L.Q., Pan Z.G., et al. Ten-year retrospective analysis of multiple trauma complicated by pulmonary contusion. Mil Med Res. 2014; 1: 7. PMID: 25722865. DOI: 10.1186/2054-9369-1-7.

23. Horst K., Eschbach D., Pfeifer R., et al. Local inflammation in fracture hematoma: results from a combined trauma model in pigs. Mediators Inflamm. 2015; 2015: 126060. PMID: 25694748. DOI: 10.1155/2015/126060.

24. Pfeifer R., Darwiche S., Kohut L., et al. Cumulative effects of bone and soft tissue injury on systemic inflammation: a pilot study. Clin Orthop Relat Res. 2013; 471 (9): 2815–2821. PMID: 23479238. DOI: 10.1007/s11999-013- 2908-8.

25. Denk S., Wiegner R., Hönes F.M., et al. Early detection of junctional adhesion molecule-1 (JAM-1) in the circulation after experimental and clinical polytrauma. Mediators Inflamm. 2015; 2015: 463950. PMID: 26556956. DOI: 10.1155/2015/463950.

26. Dai H., Xu L., Tang Y., et al. Treatment with a neutralising anti-rat interleukin-17 antibody after multiple-trauma reduces lung inflammation. Injury. 2015; 46(8): 1465–1470. PMID: 26100210. DOI: 10.1016/ j.injury.2015.05.016.

27. Gan L., Chen X., Sun T., et al. Significance of serum mtDNA concentration in lung injury induced by hip fracture. Shock. 2015; 44(1): 52–57. PMID: 25705859. DOI: 10.1097/SHK.0000000000000366.

28. Li. H., Itagaki K., Sandler N., et al. Mitochondrial damage-associated molecular patterns from fractures suppress pulmonary immune responses via formyl peptide receptors 1 and 2. J Trauma Acute Care Surg. 2015; 78(2): 272–281. PMID: 25757111. DOI: 10.1097/TA.0000000000000509.

29. Bocharov S.N., Kulinskiy V.I., Lebed’ M.L. et al. Glutathione system of internal organs in the presence of multiple skeletal trauma in experiment. Fundamental’nye issledovaniya. 2014; (10-1): 32–36. (In Russian).

30. Gandhi R.R., Overton T.L., Haut E.R. et al. Optimal timing of femur fracture stabilization in polytrauma patients: A practice management guideline from the Eastern Association for the Surgery of Trauma. J Trauma Acute Care Surg. 2014; 77(5): 787–795. PMID: 25494434. DOI: 10.1097/TA.0000000000000434.

31. Vallier H.A., Super D.M., Moore T.A., Wilber J.H. Do patients with multiple system injury benefit from early fixation of unstable axial fractures? The effects of timing of surgery on initial hospital course. J Orthop Trauma. 2013; 27(7): 405–412. PMID: 23287766. DOI: 10.1097/ BOT.0b013e3182820eba.

32. Harvin J.A., Harvin W.H., Camp E. et al. Early femur fracture fixation is associated with a reduction in pulmonary complications and hospital charges: a decade of experience with 1,376 diaphyseal femur fractures. J Trauma Acute Care Surg. 2012; 73(6): 1442–1449. PMID: 23188236. DOI: 10.1097/TA.0b013e3182782696.

33. Shabanova A. Yu. Management tactics for sufferers with polytrauma in acute period of traumatic disease. Permskiy meditsinskiy zhurnal. 2015; 32(3): 22–28. (In Russian).

34. Cantu R.V., Graves S.C., Spratt K.F. In-hospital mortality from femoral shaft fracture depends on the initial delay to fracture fixation and Injury Severity Score: a retrospective cohort study from the NTDB 2002-2006. J Trauma Acute Care Surg. 2014; 76(6): 1433–1440. PMID: 24854312. DOI: 10.1097/TA.0000000000000230.

35. Morshed S., Mikhail C., Miclau Iii T. Timing of femoral shaft fracture fixation affects length of hospital stay in patients with multiple injuries. Open Orthop J. 2015; 9: 324–331. PMID: 26312117. DOI: 10.2174/18743250 01509010324.

36. Nicola R. Early total care versus damage control: current concepts in the orthopedic care of polytrauma patients. ISRN Orthop. 2013; 2013: 329452. PMID: 24959356. DOI: 10.1155/2013/329452.

37. Hietbrink F., Koenderman L., Leenen L.P. Intramedullary nailing of the femur and the systemic activation of monocytes and neutrophils. World J Emerg Surg. 2011; 6: 34. PMID: 22040874. DOI: 10.1186/1749-7922-6-34.

38. Husebye E.E., Lyberg T., Opdahl H., et al. Intramedullary nailing of femoral shaft fractures in polytraumatized patients. a longitudinal, prospective and observational study of the procedure-related impact on cardiopulmonaryand inflammatory responses. Scand J Trauma Resusc Emerg Med. 2012; 20: 2. PMID: 22221511. DOI: 10.1186/1757-7241-20-2.

39. Gan L., Zhong J., Zhang R., et al. The immediate intramedullary nailing surgery increased the mitochondrial DNA release that aggravated systemic inflammatory response and lung injury induced by elderly hip fracture. Mediators Inflamm. 2015; 2015: 587378. PMID: 26273137. DOI: 10.1155/2015/587378.

40. Husebye E.E., Lyberg T., Opdahl H., Røise O. Intravasation of bone marrow content. Can its magnitude and effects be modulated by low pressurereaming in a porcine model? Injury. 2010; 41 (Suppl 2): S9–15. PMID: 21144936. DOI:10.1016/S0020-1383(10)70003-6. 41. Volgas D.A., Burch T., Stannard J.P., et al. Fat embolus in femur fractures: a comparison of two reaming systems. Injury. 2010;

41. (Suppl 2): S90–93. PMID: 21144937. DOI: 10.1016/S0020-1383(10)70017-6.

42. Blankstein M., Byrick R.J., Nakane M., et al. Amplified inflammatory response to sequential hemorrhage, resuscitation, and pulmonary fat embolism: an animal study. J. Bone Joint Surg. Am. 2010; 92(1): 149–161. PMID: 20048107. DOI: 10.2106/JBJS.H.01141.

43. Aoki S., Yokoyama K., Itoman M. Effects of reamed or unreamed intramedullary nailing under non-damaged conditions on pulmonary function in sheep. J Trauma. 2005; 59(3): 647–658. PMID: 16361908.

44. Blankstein M., Byrick R.J., Nakane M., et al. A preliminary study of platelet activation after embolization of marrow contents. J Orthop Trauma. 2012; 26(11): e214–220. PMID: 22473062. DOI: 10.1097/ BOT.0b013e3182410560.

45. Giannoudis P.V., van Griensven M., Hildebrand F., et al. Femoral nailingrelated coagulopathy determined by first-hit magnitude: an animal study. Clin Orthop Relat Res. 2008; 466(2): 473–480. PMID: 18196434. DOI: 10.1007/s11999-007-0066-6.

46. Neunaber C., Oestern S., Andruszkow H., et al. Cytokine productive capacity of alveolar macrophages and Kupffer cells after femoral fracture and blunt chest trauma in a murine trauma model. Immunol Lett. 2013; 152(2): 159–166. PMID: 23735227. DOI: 10.1016/j.imlet.2013.05.012.

47. Handolin L., Pajarinen J., Lassus J., Tulikoura I. Early intramedullary nailing of lower extremity fracture and respiratory function in polytraumatized patients with a chest injury: a retrospective study of 61 patients. Acta Orthop Scand. 2004; 75(4): 477–480. PMID: 15370594.

48. Anwar I.A., Battistella F.D., Neiman R., et al. Femur fractures and lung complications: a prospective randomized study of reaming. Clin Orthop Relat Res. 2004; (422): 71–76. PMID: 15187836.

49. Weresh M.J., Stover M.D., Bosse M.J., et al. Pulmonary gas exchange during intramedullary fixation of femoral shaft fractures. J Trauma. 1999; 46(5): 863–868. PMID: 10338404.

50. Jiang M., Li C., Yi C., Tang S. Early intramedullary nailing of femoral shaft fracture on outcomes in patients with severe chest injury: A meta-analysis. Sci Rep. 2016; 6: 30566. PMID: 27457468. DOI: 10.1038/srep30566.

51. Bone L.B., Giannoudis P. Femoral shaft fracture fixation and chest injury after polytrauma. J Bone Joint Surg Am. 2011; 93(3): 311–317. PMID: 21266645. DOI: 10.2106/JBJS.J.00334.

52. Bone L.B., Anders M.J., Rohrbacher B.J. Treatment of femoral fractures in the multiply injured patient with thoracic injury. Clin Orthop Relat Res. 1998; (347): 57–61. PMID: 9520875.

53. Aufmkolk M., Neudeck F., Voggenreiter G., et al. Effect of primary femoral plate osteosynthesis on the course of polytrauma patients with or without thoracic trauma. Unfallchirurg. 1998; 101(6): 433–439. PMID: 9677841.

54. Sír M., Pleva L., Procházka V. Multiple trauma – treatment of skeletal injuries with damage control orthopaedics. Rozhl Chir. 2014; 93(5): 287– 291. PMID: 24891247.

55. Recknagel S., Bindl R., Wehner T., et al. Conversion from external fixator to intramedullary nail causes a second hit and impairs fracture healing in a severe trauma model. J Orthop Res. 2013; 31(3): 465–471. PMID: 23070742. DOI: 10.1002/jor.22242.

56. Kobbe P., Micansky F., Lichte P., et al. Increased morbidity and mortality after bilateral femoral shaft fractures: myth or reality in the era of damage control? Injury. 2013; 44(2): 221–225. PMID: 23040674. DOI: 10.1016/ j.injury.2012.09.011.

57. OʼToole R.V., Lindbloom B.J., Hui E., et al. Are bilateral femoral fractures no longer a marker for death? J Orthop Trauma. 2014; 28(2): 77–82. PMID: 23981901. DOI: 10.1097/BOT.0b013e3182a83fdf.

58. Tiansheng S., Xiaobin C., Zhi L.. et al. Is damage control orthopedics essential for the management of bilateral femoral fractures associated or complicated with shock? An animal study. J Trauma. 2009; 67(6): 1402– 1411. PMID: 20009694. DOI: 10.1097/TA.0b013e3181a7462d.

59. Gray A.C., White T.O., Clutton E. et al. The stress response to bilateral femoral fractures: a comparison of primary intramedullary nailing and external fixation. J Orthop Trauma. 2009; 23(2): 90–99. PMID: 9169099. DOI: 10.1097/BOT.0b013e31819194c6.

60. Steinhausen E., Lefering R., Tjardes T., et al. A risk-adapted approach is beneficial in the management of bilateral femoral shaft fractures in multiple trauma patients: an analysis based on the trauma registry of the German Trauma Society. J Trauma Acute Care Surg. 2014; 76(5): 1288–1293. PMID: 24747462. DOI: 10.1097/TA.0000000000000167.

61. Khmara A.D., Norkin I.A., Khmara T.G. Select treatment policy in patients with combined chest injuries and limb segments. Fundamental’nye issledovaniya. 2013; (12–1): 89–92. (In Russian).

62. Richards J.E., Matuszewski P.E., Griffin S.M., et al. The role of elevated lactate as a risk factor for pulmonary morbidity after early fixation of femoral shaft fractures. J Orthop Trauma. 2016; 30(6): 312–318. PMID: 27206261. DOI: 10.1097/BOT.0000000000000528.

63. Morshed S., Corrales L.A., Lin K., Miclau T. Femoral nailing during serum bicarbonate-defined hypo-perfusion predicts pulmonary organ dysfunction in multi-system trauma patients. Injury. 2011 Jul; 42(7): 643–649. PMID: 20678765. DOI: 10.1016/j.injury.2010.07.244.

64. Easton R., Balogh Z.J. Peri-operative changes in serum immune markers after trauma: a systematic review. Injury. 2014; 45(6): 934–941. PMID: 24388280. DOI: 10.1016/j.injury.2013.12.002.

65. Lumsdaine W., Easton R.M., Lott N.J. et al. Neutrophil oxidative burst capacity for peri-operative immune monitoring in trauma patients. Injury. 2014; 45(8): 1144–1148. PMID: 24815374. DOI: 10.1016/ j.injury.2014.04.019.

66. Childs B.R., Nahm N.J., Moore T.A., Vallier H.A. Multiple procedures in the initial surgical setting: when do the benefits outweigh the risks in patients with multiple system trauma? J Orthop Trauma. 2016; 30(8): 420–425. PMID: 27441760. DOI: 10.1097/BOT.0000000000000556.


Review

For citations:


Shapkin Y.G., Seliverstov P.A. ADVANTAGES AND DANGERS OF EARLY OSTEOSYNTHESIS OF FEMUR IN POLYTRAUMA WITH CHEST INJUR. Russian Sklifosovsky Journal "Emergency Medical Care". 2017;6(3):238-245. (In Russ.) https://doi.org/10.23934/2223-9022-2017-6-3-238-245

Views: 863


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-9022 (Print)
ISSN 2541-8017 (Online)