Preview

Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»

Расширенный поиск

Кардиопротективные свойства ксенона

https://doi.org/10.23934/2223-9022-2020-9-2-264-272

Полный текст:

Аннотация

Резюме В обзоре представлены основные аспекты кардиопротективных свойств ингаляционного анестетика ксенона. На основании анализа публикаций в статье обсуждаются современные взгляды на механизмы защитного действия ксенона, реализуемые с помощью механизмов пре- и посткондиционирования, показаны основные молекулярные мишени и опосредованные ими эффекты. В статье представлены результаты экспериментальных исследований in vivo и in vitro, в которых было показано защитное действие ксенона на миокард и результаты недавних рандомизированных клинических исследований. Проведенный анализ исследований демонстрирует способность  ксенона повышать устойчивость миокарда к ишемии и реперфузии и открывает хорошие перспективы его применения в клинической практике у пациентов с высоким риском кардиальных осложнений.

Об авторах

А. И. Шпичко
ФГБНУ «Федеральный научно-клинический центр реаниматологии и реабилитологии»
Россия

Шпичко Андрей Иванович, кандидат медицинских наук, старший научный сотрудник лаборатории органопротекции при критических состояниях

107031, Москва, ул. Петровка, д. 25, стр. 2



О. А. Гребенчиков
ФГБНУ «Федеральный научно-клинический центр реаниматологии и реабилитологии»
Россия

Гребенчиков Олег Александрович, доктор медицинских наук, главный научный сотрудник лаборатории органопротекции при критических состояниях

107031, Москва, ул. Петровка, д. 25, стр. 2

 



И. В. Молчанов
ФГБНУ «Федеральный научно-клинический центр реаниматологии и реабилитологии»
Россия

Молчанов Игорь Владимирович, доктор медицинских наук, профессор, руководитель НИИ общей реаниматологии

107031, Москва, ул. Петровка, д. 25, стр. 2



А. К. Шабанов
ФГБНУ «Федеральный научно-клинический центр реаниматологии и реабилитологии»; ГБУЗ «Научно-исследовательский институт скорой помощи им. Н.В. Склифосовского ДЗМ»
Россия
Шабанов Аслан Курбанович, доктор медицинских наук, главный научный сотрудник лаборатории клинической патофизиологии при критических состояниях; заместитель главного врача по анестезиологии и реаниматологии

107031, Москва, ул. Петровка, д. 25, стр. 2

129090, Москва, Б. Сухаревская пл., д. 3



Н. П. Шпичко
ФГБНУ «Федеральный научно-клинический центр реаниматологии и реабилитологии»
Россия

Шпичко Надежда Павловна, научный сотрудник лаборатории двигательной реабилитации, восстановления глотания и речи

107031, Москва, ул. Петровка, д. 25, стр. 2



К. К. Каданцева
ФГБНУ «Федеральный научно-клинический центр реаниматологии и реабилитологии»
Россия

Каданцева Кристина Кирилловна, научный сотрудник лаборатории органопротекции при критических состояниях

107031, Москва, ул. Петровка, д. 25, стр.



Список литературы

1. The BARI investigators. The final 10-year follow-up results from the BARI randomized trial. J Am Coll Cardiol. 2007;49(15):1600–1606. PMID: 17433949 https://doi.org/10.1016/j.jacc.2006.11.048

2. Al-Hijji M, El Sabbagh A, Holmes DR. Revascularization for Left Main and Multivessel Coronary Artery Disease: Current Status and Future Prospects after the EXCEL and NOBLE Trials. Korean Circ J. 2018;48(6): 447–462. PMID: 29856140 https://doi.org/10.4070/kcj.2018.0078

3. Møller CH, Penninga L, Wetterslev J, Steinbrüchel DA, Gluud C. Offpump versus on-pump coronary artery bypass grafting for ischaemic heart disease. Cochrane Database Syst Rev. 2012;(3):CD007224. PMID: 22419321 https://doi.org/10.1002/14651858.CD007224.pub2

4. Козлов И.А., Овезов А.М., Петровская Э.Л. Периоперационные повреждение миокарда и сердечная недостаточность в некардиальной хирургии (обзор). Часть 1. Этиопатогенез и прогнозирование периоперационных кардиальных осложнений. Общая реаниматология. 2019;15(2): 53–78. https://doi.org/10.15360/1813-9779-2019-2-53-78

5. Devereaux PJ, Goldman L, Cook DJ, Gilbert K, Leslie K, Guyatt GH. Perioperative cardiac events in patients undergoing noncardiac surgery: a review of the magnitude of the problem, the pathophysiology of the events and methods to estimate and communicate risk. CMAJ. 2005;173(6):627–634. PMID: 16157727 https://doi.org/10.1503/cmaj.050011

6. Kristensen SD, Knuuti J, Saraste A, Anker S, Bøtker HE, De Hert S, et al. ESC/ESA Guidelines on non–cardiac surgery: cardiovascular assessment and management: The Joint Task Force on non-cardiac surgery: cardiovascular assessment and management of the European Society of Cardiology (ESC) and the European Society of Anaesthesiology (ESA). Eur J Anaesthesiol. 2014;31(10):517–573. PMID: 25127426 https://doi.org/10.1097/EJA.0000000000000150

7. Лихванцев В.В., Скрипкин Ю.В., Гребенчиков О.А., Ильин Ю.В., Шапошников Б.А., Мироненко А.В. Механизмы действия и основные эффекты галогенсодержащих анестетиков. Вестник интенсивной терапии. 2013;(3):44–51.

8. Мороз В.В., Силачев Д.Н., Плотников Е.Ю., Зорова Л.Д., Певзнер И.Б., Гребенчиков О.А., и др. Механизмы повреждения и защиты клетки при ишемии/реперфузии и экспериментальное обоснование применения препаратов на основе лития в анестезиологии. Общая реаниматология. 2013;9(1):63–72.

9. Kersten JR, Schmeling М, Pagel PS, Gross GJ, Warltier DC. Isoflurane mimics ischemic preconditioning via activation of K (ATP) channels. Reduction of myocardial infarct size with acute memory phase. Anesthesiology. 1997;87(2):361–370. PMID: 9286901 https://doi.org/10.1097/00000542-199708000-00024

10. De Hert SG, Turani F, Mathur S, Stowe DF. Cardioprotection with volatile anesthetics: mechanisms and clinical implications. Anesth Analg. 2005;100(6):1584–1593. PMID: 15920178 https://doi.org/10.1213/01.ANE.0000153483.61170.0C

11. Murry CE, Richard VJ, Jennings RB, Reimer KA. Myocardial protection is lost before contractile function recovers from ischemic preconditioning. Am J Physiol. 1991;260(3,Pt2):796–805. PMID: 2000974 https://doi.org/10.1152/ajpheart.1991.260.3.H796

12. Roehl AB, Funcke S, Becker MM, Goetzenich A, Bleilevens C, Rossaint R, et al. Xenon and isoflurane reduce left ventricular remodeling after myocardial infarction in the rat. Anesthesiology. 2013;118(6):1385–1394. PMID: 23364599 https://doi.org/10.1097/ALN.0b013e31828744c0

13. Schwiebert C, Huhn R, Heinen A, Weber NC, Hollmann MW, Schlack W, et al. Postconditioning by xenon and hypothermia in the rat heart in vivo. Eur J Anaesthesiol. 2010;27(8):734–739. PMID: 20051868 https://doi.org/10.1097/EJA.0b013e328335fc4c

14. Li Q, Lian C, Zhou R, Li T, Xiang X, Liu B. Pretreatment with xenon protected immature rabbit heart from ischaemia/reperfusion injury by opening of the mitoKATP channel. Heart Lung Circ. 2013;22(4):276–283. PMID: 23261327 https://doi.org/10.1016/j.hlc.2012.10.016

15. Mio Y, Shim YH, Richards E, Bosnjak ZJ, Pagel PS, Bienengraeber M. Xenon preconditioning: the role of prosurvival signaling, mitochondrial permeability transition and bioenergetics in rats. Anesth Analg. 2009;108(3):858–866. PMID: 19224794 https://doi.org/10.1213/ane.0b013e318192a520

16. Hausenloy DJ, Lecour S, Yellon DM. Reperfusion injury salvage kinase and survivor activating factor enhancement prosurvival signaling pathways in ischemic postconditioning: two sides of the same coin. Antioxid Redox Signal. 2011;14(5):893–907. PMID: 20615076 https://doi.org/10.1089/ars.2010.3360

17. Weber NC, Toma O, Wolter JI, Obal D, Müllenheim J, Preckel B, et al. The noble gas xenon induces pharmacological preconditioning in the rat heart in vivo via induction of PKC-epsilon and p38 MAPK. Br J Pharmacol. 2005;144(1):123–132. PMID: 15644876 https://doi.org/10.1038/sj.bjp.0706063

18. Weber NC, Toma O, Wolter JI, Wirthle NM, Schlack W, Preckel B. Mechanisms of xenon- and isoflurane-induced preconditioning - a potential link to the cytoskeleton via the MAPKAPK-2/HSP27 pathway. Br J Pharmacol. 2005;146(3):445–55. PMID: 16086037 https://doi.org/10.1038/sj.bjp.0706324

19. Liu W, Liu Y, Chen H, Liu K, Tao H, Sun X. Xenon preconditioning: molecular mechanisms and biological effects. Med Gas Res. 2013;3(1):3. PMID: 23305274 https://doi.org/10.1186/2045-9912-3-3

20. Simkhovich BZ, Przyklenk K, Kloner RA. Role of protein kinase C in ischemic “conditioning”: from first evidence to current perspectives. J Cardiovasc Pharmacol Ther. 2013;18(6):525–532. PMID: 23872508 https://doi.org/10.1177/1074248413494814

21. Weber NC, Toma O, Damla H, Wolter JI, Schlack W, Preckel B. Upstream signaling of protein kinase C-epsilon in xenon-induced pharmacological preconditioning. Implication of mitochondrial adenosine triphosphate dependent potassium channels and phosphatidylinositol-dependent kinase-1. Eur J Pharmacol. 2006;539(1–2):1–9. PMID: 16716295 https://doi.org/10.1016/j.ejphar.2006.03.054

22. Weber NC, Stursberg J, Wirthle NM, Toma O, Schlack W, Preckel B. Xenon preconditioning differently regulates p44/42 MAPK (ERK 1/2) and p46/54 MAPK (JNK 1/2 and 3) in vivo. Br J Anaesth. 2006;97(3):298– 306. PMID: 16793779 https://doi.org/10.1093/bja/ael153

23. Weber NC, Frässdorf J, Ratajczak C, Grueber Y, Schlack W, Hollmann MW, et al. Xenon induces late cardiac preconditioning in vivo: a role for cyclooxygenase 2? Anesth Analg. 2008;107(6):1807–1813. PMID: 19020121 https://doi.org/10.1213/ane.Ob013e31818874bf

24. Weber NC, Kandler J, Schlack W, Grueber Y, Frädorf J, Preckel B. Intermitted pharmacologic pretreatment by xenon, isoflurane, nitrous oxide, and the opioid morphine prevents tumor necrosis factor alphainduced adhesion molecule expression in human umbilical vein endothelial cells. Anesthesiology. 2008;108(2):199–207. PMID: 18212564 https://doi.org/10.1097/01.anes.0000299441.32091.ed

25. Rossaint R, Reyle-Hahn M, Schulte Am Esch J, Scholz J, Scherpereel P, Vallet B, et al. Multicenter randomized comparison of the efficacy and safety of xenon and isoflurane in patients undergoing elective surgery. Anesthesiology. 2003;98(1):6–13. PMID: 12502972 https://doi.org/10.1097/00000542-200301000-00005

26. Wappler F, Rossaint R, Baumert J, Scholz J, Tonner PH, van Aken H, et al. Multicenter randomized comparison of xenon and isoflurane on left ventricular function in patients undergoing elective surgery. Anaesthesiology. 2007;106(3):463–471. PMID: 17325504 https://doi.org/10.1097/00000542-200703000-00010

27. Baumert JH, Roehl AB, Funcke S, Hein M. Xenon protects left ventricular diastolic function during acute ischemia, less than ischemic preconditioning. Med Gas Res. 2016;6(3):130–137. PMID: 27867480 https://doi.org/10.4103/2045-9912.191358

28. Preckel B, Müllenheim J, Moloschavij A, Thämer V, Schlack W. Xenon administration during early reperfusion reduces infarct size after regional ischemia in the rabbit heart in vivo. Anesth Analg. 2000;91(6):1327–1332. PMID: 11093973 https://doi.org/10.1097/00000539-200012000-00003

29. Coburn M, Kunitz O, Baumert JH, Hecker K, Haaf S, Zühlsdorff A, et al. Randomized controlled trial of the haemodynamic and recovery effects of xenon or propofol anaesthesia. Br J Anaesth. 2005;94(2):198–202. PMID: 15531620 https://doi.org/10.1093/bja/aei023

30. Baumert JH, Hein M, Hecker KE, Satlow S, Neef P, Rossaint R. Xenon or propofol anaesthesia for patients at cardiovascular risk in non-cardiac surgery. Br J Anaesth. 2008;100(5):605–611. PMID: 18344556 https://doi.org/10.1093/bja/aen050

31. Law LS, Lo EA, Gan TJ. Xenon anesthesia: A systematic review and metaanalysis of randomized controlled trials. Anesth Analg. 2016;122(3):678–697. PMID: 26273750 https://doi.org/10.1213/ANE.0000000000000914

32. Xia Y, Fang H, Xu J, Jia C, Tao G, Yu B. Clinical efficacy of xenon versus propofol: A systematic review and meta-analysis. Medicine (Baltimore). 2018;97(20):e10758. PMID: 29768360 https://doi.org/10.1097/MD.0000000000010758

33. Dingley J, King R, Hughes L, Terblanche C, Mahon S, Hepp M, et al. Exploration of xenon as a potential cardiostable sedative: a comparison with propofol after cardiac surgery. Anaesthesia. 2001;56(9):829–835. PMID: 11531666 https://doi.org/10.1046/j.1365-2044.2001.02139.x

34. Stoppe C, Fahlenkamp AV, Rex S, Veeck NC, Gozdowsky SC, Schälte G, et al. Feasibility and safety of xenon compared with sevoflurane anaesthesia in coronary surgical patients: A randomized controlled pilot study. Br J Anaesth. 2013;111(3):406–416. PMID: 23578862 https://doi.org/10.1093/bja/aet072

35. Lockwood GG, Franks NP, Downie NA, Taylor KM, Maze M. Feasibility and safety of delivering xenon to patients undergoing coronary artery bypass graft surgery while on cardiopulmonary bypass: Phase I study. Anesthesiology. 2006;104(3):458–465. PMID: 16508392 https://doi.org/10.1097/00000542-200603000-00012

36. Al Tmimi L, Van Hemelrijck J, Van de Velde M, Sergeant P, Meyns B, Missant C, et al. Xenon anaesthesia for patients undergoing offpump coronary artery bypass graft surgery: A prospective randomized controlled pilot trial. Br J Anaesth. 2015;115(4):550–559. PMID: 26385664 https://doi.org/10.1093/bja/aev303

37. Mokhtar AT, Begum J, Buth KJ, Legare JF. Cardiac troponin T is an important predictor of mortality after cardiac surgery. J Crit Care. 2017;38:41–46. PMID: 27837691 https://doi.org/10.1016/j.jcrc.2016.10.011

38. Hofland J, Ouattara A, Fellahi J-L, Gruenewald M, Hazebroucq J, Ecoffey C, et. аl. Effect of Xenon Anesthesia Compared to Sevoflurane and Total Intravenous Anesthesia for Coronary Artery Bypass Graft Surgery on Postoperative Cardiac Troponin Release An International, Multicenter, Phase 3, Single-blinded, Randomized Noninferiority Trial. Anesthesiology. 2017;127(6):918–933. PMID: 28872484 https://doi.org/10.1097/ALN.0000000000001873

39. Arola O, Saraste A, Laitio R, Airaksinen J, Hynninen M, Bäcklund M, et al. Inhaled Xenon Attenuates Myocardial Damage in Comatose Survivors of Out-of-Hospital Cardiac Arrest: The Xe-Hypotheca Trial. J Am Coll Cardiol. 2017;70(21):2652–2660. PMID: 29169472 https://doi.org/0.1016/j.jacc.2017.09.1088/2017

40. Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med. 2002;346(8):549–556. PMID: 11856793 https://doi.org/10.1056/NEJMoa012689

41. Nielsen N, Wetterslev J, Cronberg T, Erlinge D, Gasche Y, Hassager C, et al. Targeted temperature management at 33°C versus 36°C after cardiac arrest. N Engl J Med. 2013;369(23):2197–2206. PMID: 24237006 https://doi.org/10.1056/NEJMoa1310519

42. Gräsner JT, Lefering R, Koster RW, Masterson S, Böttiger BW, Herlitz J, et al. EuReCa ONE-27 Nations, ONE Europe, ONE Registry: a prospective one month analysis of out-of-hospital cardiac arrest outcomes in 27 countries in Europe. Resuscitation. 2016;105:88–195. PMID: 27321577 https://doi.org/10.1016/j.resuscitation.2016.06.004

43. Breuer T, Emontzpohl C, Coburn M, Benstoem C, Rossaint R, Marx G, et al. Xenon triggers pro-inflammatory effects and suppresses the anti-inflammatory response compared to sevoflurane in patients undergoing cardiac surgery. Crit Care. 2015;19:365. PMID: 29623938 https://doi.org/10.4103/1673-5374.228757


Для цитирования:


Шпичко А.И., Гребенчиков О.А., Молчанов И.В., Шабанов А.К., Шпичко Н.П., Каданцева К.К. Кардиопротективные свойства ксенона. Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь». 2020;9(2):264-272. https://doi.org/10.23934/2223-9022-2020-9-2-264-272

For citation:


Shpichko A.I., Grebenchikov O.A., Molchanov I.V., Shabanov A.K., Shpichko N.P., Kadantseva K.K. Cardioprotective Properties Of Xenon. Russian Sklifosovsky Journal "Emergency Medical Care". 2020;9(2):264-272. https://doi.org/10.23934/2223-9022-2020-9-2-264-272

Просмотров: 195


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2223-9022 (Print)
ISSN 2541-8017 (Online)