Preview

Russian Sklifosovsky Journal "Emergency Medical Care"

Advanced search

PRESEPSIN AS THE EARLY MARKER OF PURULENT SEPTIC COMPLICATIONS IN PATIENTS WITH SEVERE ACUTE PANCREATITIS

https://doi.org/10.23934/2223-9022-2018-7-1-30-36

Abstract

Sepsis is the leading cause of mortality in patients with severe acute pancreatitis (SAP). High mortality rate in patients with SAP is mainly associated with purulent and inflammatory process in parapancreatic fat. Early laboratory diagnosis of infection is vitally important for timely indications for surgery and successful therapy. Aim of study The comparison of prognostic and diagnostic values of presepsin and acute phase proteins (CRP, PCT) in the development of septic complications in patients with SAP at the early stage. Material and methods We examined 37 patients with SAP. Depending on the course and outcome of the disease, patients were divided into two groups: Group 1 (n=10) — deceased patients, Group 2 (n=27) — patients with a favorable outcome. Each of these groups was divided into two subgroups: 1A (n=8) — patients who died of sepsis, 1B (n=2) — patients who died of other causes, 2A (n=7) — patients with a favorable outcome of sepsis and 2B (n=20) — patients without septic complications. The PSEP level was measured with PATHFAST enzyme immunoassay analyzer (LSI Medience Corporation, Japan). Descriptive statistics of quantitative characteristics were represented by medians and quartiles (Me (LQ; UQ)), values of area under the ROC curve (AUC) and 95% confidence interval. To compare the groups, the Mann–Whitney U test was used. Results The concentration of PSEP 785 pg/ml and higher on day 2–5 from the onset of the disease indicated a significant risk of purulent complications in intensive care patients with a sensitivity of 91.2% (95% CI, 77.93–97.89) and a specificity of 77.3% (95% CI, 51.59–97.91). The area under the curve for PSEP was 0.859 (AUC). PCT — 0.804 (AUC), sensitivity — 85%, specificity — 57%. CRP — 0.718 (AUC), sensitivity — 75% and specificity — 50%. Conclusion Based on the data obtained, it can be concluded that PSEP has the most informative value and diagnostic sensitivity compared to other markers of inflammation for an early diagnosis of sepsis in patients with SAP.

About the Authors

N. N. Salina
N.V. Sklifosovsky Research Institute for Emergency Medicine of the Moscow Healthcare Department, Moscow
Russian Federation
Doctor in the Laboratory of Clinical Immunology


V. P. Nikulina
N.V. Sklifosovsky Research Institute for Emergency Medicine of the Moscow Healthcare Department, Moscow
Russian Federation
Clinical immunology laboratory


R. N. Borisov
N.V. Sklifosovsky Research Institute for Emergency Medicine of the Moscow Healthcare Department, Moscow
Russian Federation
Clinical immunology laboratory


M. A. Godkov
N.V. Sklifosovsky Research Institute for Emergency Medicine of the Moscow Healthcare Department, Moscow
Russian Federation
Clinical immunology laboratory


References

1. Agapov K.V. Diagnosis and treatment of pancreatic necrosis. Economic justification of rational surgical tactics: Dr. med. sci. diss. synopsis. Moscow, 2012. 54 p. (In Russian).

2. Rau В., Beger H. Surgical management of necrotizing pancreatitis: necrosectomy and local lavage. In: The Pancreas. Vol. l. Blackwell Science. Oxford, 1998: 562–568.

3. Savel’ev V.S., Gel’fand B.R., eds. Sepsis at the beginning of the XXI century. Classification, clinical-diagnostic concept and treatment. Pathology diagnostics: a practical guide. Moscow: Litterra Publ., 2006. 176p. (In Russian).

4. Borovkova N.V., Ermolov A.S., Khvatov V.B. Characteristic of the inductive phase of immune response in patients with severe acute pancreatitis. Immunologiya. 2009; (4): 209–212. (In Russian).

5. Kumar A., Roberts D., Wood K.E., et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006; 34(6): 1589– 1596. PMID: 16625125. DOI: 10.1097/01.CCM.0000217961.75225.E9.

6. Tarasenko V.S., Smolyagin A.I., Kubyshkin V.A. Immunological features in acute pancreatitis. Khirurgiya. 2000; (8): 51–55. (In Russian).

7. Horeczko T., Green J.P., Panacek E.A. Epidemiology of the Systemic Inflammatory Response Syndrome (SIRS) in the Emergency Department. West J Emerg Med. 2014; 15(3): 329–336. DOI: 10.5811/westjem.2013.9.18064.

8. Gel’fand B.R., Burnevich S.Z., Gel’fand E.B., et al. Biochemical markers of systemic inflammatory reaction: the role of procalcitonin in the diagnosis of sepsis. Infektsii v khirurgii. 2007; 5(1): 17–24. (In Russian).

9. Khanna A.K., Meher S., Prakash S., et al. Comparison of Ranson, Glasgow, MOSS, SIRS, BISAP, APACHE-II, CTSI Scores, IL-6, CRP, and Procalcitonin in Predicting Severity, Organ Failure, Pancreatic Necrosis, and Mortality in Acute Pancreatitis. HPB Surg. 2013; 2013: 367581. PMID: 24204087. PMCID: PMC3800571. DOI: 10.1155/2013/367581.

10. Meher S., Мishra T.S., Sasmal P.K., et al. Role of Biomarkers in Diagnosis and Prognostic Evaluation of Acute Pancreatitis. J Biomark. 2015; 2015: 519534. PMID: 26345247. PMCID: PMC4541003. DOI: 10.1155/2015/519534.

11. Gomatos I.P., Xiaodohg X., Ghaneh P., et al. Prognostic markers in acute pancreatitis. Expert Rev Mol Diagn. 2014; 14(3): 333–346. PMID: 24649820. DOI: 10.1586/14737159.2014.897608.

12. Ciriello V., Gudipati S., Stavrou P.Z., et al. Biomarkers predicting sepsis in polytrauma patients: Current evidence. Injury. 2013; 44(12): 1680–1692. PMID: 24119650. DOI: 10.1016/j.injury.2013.09.024.

13. Ingram N. Procalcitonin: does it have a role in the diagnosis, management and prognosis of patients with sepsis? J Int Care Soc. 2013; 14(3): 226–230. DOI: 10.1177/175114371301400310.

14. Sridharan P., Chamberlain R.S. The efficacy of procalcitonin as a biomarker in the management of sepsis: slaying dragons or tilting at windmills? Surg Infect (Larchmt). 2013; 14(6): 489–511. PMID: 24274059. DOI: 10.1089/sur.2012.028.

15. Endo S., Suzuki Y., Takahashi G., et al. Presepsin as a powerful monitoring tool for the prognosis and treatment of sepsis: A multicenter prospective study. J Infect Chemother. 2014; 20(1): 30–34. PMID: 24462421. DOI: 10.1016/j.jiac.2013.07.005.

16. Sargentini V., Ceccarelli G., D’Alessandro M., et al. Presepsin as a potential marker for bacterial infection relapse in critical care patients. A preliminary study. Clin Chem Lab Med. 2015; 53(4): 567–573. PMID: 24897401. DOI: 10.1515/cclm-2014-0119.

17. Polyakova I.N., Androsova M.V., Mazanov M.Kh., Godkov M.A. The dynamics of presepsin in the blood in patients with coronary heart disease, operated under conditions of artificial circulation. The problem of infection in critical conditions: a program and a collection of publications of the Xth annual conference with international participation (Moscow, May 29–30, 2014). Moscow, 2014. 106–107. (In Russian).

18. Endo S., Takahashi G., Shozushima T., et al. Usefulness of Presepsin (Soluble CD14 Subtype) as a Diagnostic Marker for Sepsis. JJAAM. 2012; 23: 27–38. DOI: 10.3893/jjaam.23.27.

19. Vel’kov V.V. The use of the presepsin biomarker for early and highly specific diagnosis of sepsis. Rany i ranevye infektsii. 2015; (1): 53–82. (In Russian).

20. Zou Q., Wen W., Zhang X. Presepsin as a novel sepsis biomarker. World J Emerg Med. 2014; 5(1):16–19. PMID: 25215141. PMCID: PMC4129857. DOI: 10.5847/wjem.j.1920-8642.2014.01.002.

21. Spanuth E., Ebelt H., Ivandic B., Werdan K. Diagnostic and prognostic value of presepsin (soluble CD14 subtype) in emergency patients with early sepsis using the new assay PATHFAST Presepsin. Abstr. 21st International Congress of Clinical Chemistry and Laboratory Medicine, IFCC-WorldLab – EuroMedLab, Berlin, 15–19 May 2011. Available at: http://medi-lab.hu/doc/Poster_sCD14-ST.pdf (Accessed 28 February 2018). (In Russian).

22. Ulla M., Pizzolato E., Lucchiari M., et al. Diagnostic and prognostic value of Presepsin in the management of sepsis in the emergency department: a multicentre prospective study. Crit Care. 2013; 17(4): R168. PMID: 23899120. PMCID: PMC4056762. DOI:10.1186/cc12847.

23. Masson S., Caironi P., Spanuth E., et al. Presepsin (soluble CD14 subtype) and procalcitonin levels for mortality prediction in sepsis: data from the Albumin Italian Outcome Sepsis trial. Crit Care. 2014; 18(1): R6. PMID: 24393424. PMCID: PMC4056046. DOI:10.1186/cc13183.

24. Shirakawa K., Naitou K., Hirose J., et al. The new sepsis marker, sCD14- ST, induction mechanism in the rabbit sepsis models. Crit Care. 2014; 14(Suppl 2): 19. DOI: 10.1186/cc9122.


Review

For citations:


Salina N.N., Nikulina V.P., Borisov R.N., Godkov M.A. PRESEPSIN AS THE EARLY MARKER OF PURULENT SEPTIC COMPLICATIONS IN PATIENTS WITH SEVERE ACUTE PANCREATITIS. Russian Sklifosovsky Journal "Emergency Medical Care". 2018;7(1):30-36. https://doi.org/10.23934/2223-9022-2018-7-1-30-36

Views: 1069


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-9022 (Print)
ISSN 2541-8017 (Online)