ИММУНОЛОГИЧЕСКИЕ АСПЕКТЫ СЕПСИСА (ОБЗОР ИНОСТРАННОЙ ЛИТЕРАТУРЫ)

Полный текст:


Аннотация

Резюме. В обзоре представлены результаты исследования зарубежных ученых за последние 15 лет, посвященных оценке диагностической и прогностической значимости иммунологических параметров, которые ассоциируются с риском развития сепсиса и его исходами после обширных полостных операций или операций по поводу сочетанной травмы и острой кровопотери. 


Об авторе

Г. В. Булава
НИИ скорой помощи им. Н.В. Склифосовского ДЗ г. Москвы, Москва
Россия
д.м.н. ведущий научный сотрудник лаборатории клинической иммунологии


Список литературы

1. Antonopoulou A., Giamarellos-Bourboulis E.J. Immunomodulation in sepsis: state of the art and future perspective // Immunotherapy. – 2011. – Vol. 3, N. 1. – P. 117–128.

2. Levy M.M., Fink M.P., Marshal J.C. et al. 2001 SCCM/ESICM/ACCP/ATS/ SIS International Sepsis Definitions Conference // Crit. Care. Med. – 2003. – Vol. 31, N. 4. – P. 1250–1256.

3. Vogel T.R., Dombrovskiy V.Y., Carson J.L. et al. Postoperative Sepsis in the United States // Ann. Surg. – 2010. – Vol. 252, N. 6. – P. 1065–1071.

4. Vincent J.L., Sakr Y., Sprung C.L. et al. Sepsis in European intensive care units: Results of the SOAP study // Crit. Care. Med. – 2006. – Vol. 34, N. 2. – P. 344–353.

5. Wafaisade А., Lefering R., Bouillon B. et al. Epidemiology and Risk Factors of Sepsis after Multiple Trauma. An Analysis of 29,829 Patients From the Trauma Registry of the German Society for Trauma Surgery // Crit. Care Med. – 2011. – Vol. 39, N. 4. – P. 621–628.

6. Dellinger R.P., Levy M.M., Carlet J.M. et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008 // Int. Care Med. – 2008. – Vol. 36, N. 1. – P. 296–327.

7. Wagner J.A., Williams S.A., Webster C.J. Biomarkers and surrogate end points for fit-for-purpose development and regulatory evaluation of new drugs // Clin. Pharmacol. Ther. – 2007. – Vol. 81. – P. 104–107.

8. The Biomarker Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework // Clin. Pharmacol. Ther. – 2001. – Vol. 69. – P. 89–95.

9. Marshall J.C., Vincent J.L., Fink M.P. et al. Measures, markers, and mediators: toward a staging system for clinical sepsis: a report of the Fifth Toronto Sepsis Roundtable, Toronto, Ontario, Canada, October 25–26, 2000 // Crit. Care Med. – 2003. – Vol. 31. – P. 1560–1567.

10. Faist E. The mechanisms of host defense dysfunction following shock and trauma // Pathology of Septic Shock / E.T. Rietschel, H. Wagner.- Heidelberg: Springer-Verlag, 1996. – P. 259–274.

11. Guillou P.J. Biological variation in the development of sepsis after surgery or trauma // Surgery. – 1993. – Vol. 342. – P. 217–220.

12. Hensler T., Hecker H., Heeg K. et al. Distinct mechanisms of immunosuppression as a consequence of major surgery // Int. Immunol. – 1997. – Vol. 65. – P. 2283–2291.

13. Wakefield C.H., Carey P.D., Foulds S. et al. Changes in major histocompatibility complex class II expression in monocytes and T cells of patients developing infection after surgery // Br. J. Surg. – 1993. – Vol. 80. – P. 205–209.

14. Windzor A.C., Klava A., Somers S.S. et al. Manipulation of local and systemic host defence in the prevention of perioperative sepsis // Br. J. Surg. – 1995. – Vol. 82. – P. 1460–1467.

15. Brune I.B., Wilke W., Hensler T. et al. Down-regulation of Th1 immune response and altered pro- and anti-inflammatory T cell cytokine balance following conventional, but not laparoscopic, surgery // Am. J. Surg. – 1999. – Vol. 177. – P. 55–60.

16. Carlei F., Schietroma M., Cianca G. et al. Effects of laparoscopic and conventional (open) cholejystectomy on human leukocyte antigen-DR expression peripheral blood monocytes: correlations with immunologic status // World J. Surg. – 1999. – Vol. 23. – P. 18–22.

17. Decker D., Schondorf M., Bidlingmaier F. et al. Surgical stress induces a shift in the type-1/type-2 T-helper cell balance, suggesting downregulation of cell-mediated and up-regulation of antibody-mediated immunity commensurate to the trauma // Surgery. – 1996. – Vol. 119. – P. 316–325.

18. Von Dossow V., Rotard K., Redlich U. et al. Circulating immune parameters predicting the progression from hospital-acquired pneumonia to septic shock in surgical patients // Crit. Care. – 2005. – Vol. 9, N. 6. – R662–R669.

19. Hershman M.J., Cheadle W.G., Wellhausen S.R. et al. Monocyte HLADR antigen expression characterizes clinical outcome in the trauma patients // Br. J. Surg. – 1990. – Vol. 77. – P. 204–207.

20. Monneret G., Lepape A., Voirin N. et al. Persisting low monocyte human leukocyte antigen-DR expression predicts mortality in septic shock // Intensive Care Med. – 2006. – Vol. 32. – P. 1175–1183.

21. Riese J., Warner K., Zimmermann P. et al. Association of a TNFbeta gene polymorphism with complications after major abdominal operations // Shock 2003. – Vol. 19. – P. 1–4.

22. Kahlke V., Schafmayer C., Schniewind B. et al. Are postoperative complications genetically determined by TNF-? Ncol gene polymorphism? // Surgery. – 2004. – Vol. 135. – P. 365–373.

23. Majetschak M., Flohė S., Obertacke U. et al. Relation of a TNF gene polymorphism to severe sepsis in trauma patients // Ann. Surg. – 1999. – Vol. 230. – P. 207–214.

24. Mira J.P., Cariou A., Grall F. et al. Association of TNF2, a TNF-alpha pro￾moter polymorphism, with septic shock susceptibility and mortality: a multicenter study // JAMA. – 1999. – Vol. 282. – P. 561–568.

25. Stuber F., Petersen M., Bokelmann F., Schade U. A genomic polymorphism within the tumor necrosis factor locus influences plasma tumor necrosis factor-alpha concentrations and outcome of patients with severe sepsis // Crit. Care Med. – 1996. – Vol. 24. – P. 381–384.

26. Reinhart K., Meier-Hellmann A., Beale R. et al. Open randomized phase II trial of an extracorporeal endotoxin absorber in suspected Gram-negative sepsis // Crit. Care Med. – 2004. – Vol. 32. – P. 1662–1668.

27. Abraham E., Anzueto A., Gutierrez G. et al. Double-blind randomised controlled trial of monoclonal antibody to human tumour necrosis factor in treatment of septic shock. NORASEPT II Study Group // Lancet. – 1998. – Vol. 351. – P. 929–933.

28. Opal S.M., Fisher C.J., Dhainaut J.F. et al. Confirmatory interleukin-1 receptor antagonist trial in severe sepsis: a phase III, randomized, double-blind, placebo-controlled, multicenter trial. The Interleukin-1 Receptor Antagonist Sepsis Investigator Group // Crit. Care Med. – 1997. – Vol. 25. – P. 1115–1124.

29. Kellum J.A., Kong L., Fink M.P. et al. Understanding the inflammatory cytokine response in pneumonia and sepsis // Arch. Intern. Med. – 2007. – Vol. 167, N. 15. – P. 1655–1663.

30. Kinasewitz G.T., Yan S.B., Basson B. et al. Universal changes in biomarkers of coagulation and inflammation occur in patients with severe sepsis, regardless of causative micro-organism // Crit. Care. – 2004. – Vol. 8, N. 2. – R82–R90.

31. Oberholzer A., Souza S.M., Tschoeke S.K. et al. Plasma cytokine measurements augment prognostic scores as indicators of outcome in patients with severe sepsis // Shock. – 2005. – Vol. 23, N. 6. – P. 488–493.

32. Groeneveld A.B., Bossink A.W., van Mierlo G.J., Hack C.E. Circulating inflammatory mediators in patients with fever: predicting bloodstream infection // Clin. Diagn. Lab. Immunol. – 2001. – Vol. 8, N. 6. – P. 1189– 1195.

33. Mokart D., Merlin M., Sannini A. et al. Procalcitonin, interleukin 6 and systemic inflammatory response syndrome (SIRS): early markers of postoperative sepsis after major surgery // Brit. J Anaes. – 2005. – Vol.94, N.6.- P.767-773.

34. Zweigner J., Schumann R., Weber J.R. The role of lipopolysaccharide￾binding protein in modulating the innate immune response // Microbe. s Infect. – 2006. – Vol. 8, N. 3. – P. 946–952.

35. Kaden J., Zwerenz P., Lambrecht H.G., Dostatni R. Lipopolysaccharidebinding protein as a new and reliable infection marker after kidney transplantation // Transpl. Int. – 2002. – Vol. 15, N. 4. – P. 163–172.

36. Zweigner J., Gramm H.J., Singer O.C. et al. High concentrations of lipopolysaccharide-binding protein in serum of patients with severe sepsis or septic shock inhibit the lipopolysaccharide response in human monocytes // Blood. – 2001. – Vol. 98, N. 13. – P. 3800–3808.

37. Blairon L., Wittebole X., Laterre P.F. Lipopolysaccharide-binding protein serum levels in patients with severe sepsis due to gram-positive and fungal infections // J. Infect. Dis. – 2003. – Vol. 187, N. 2. – P. 287–291.

38. Hopstaken R.M., Cals J.W.L., Dinant G.J. Accuracy of lipopolysaccharidebinding protein (LBP) and fibrinogen compared to C-reactive protein (CRP) in differentiating pneumonia from acute bronchitis in primary care // Prim. Care Respir J. – 2009. – Vol. 18, N. 3. – P. 227–230.

39. Oude Nijhuis C.S., Vellenga E., Daenen S.M. et al. Lipopolysaccharidebinding protein: a possible diagnostic marker for Gram-negative bacteremia in neutropenic cancer patients // Int. Care Med. – 2003. – Vol. 29, N. 12. – P. 2157–2161.

40. Villar J., Perez-Mundez L., Espinosa E. et al. Serum lipopolysaccharide binding protein levels predict severity of lung injury and mortality in patients with severe sepsis // PLoS One. – 2009. – Vol. 4, N. 8. – P. e6818.

41. Hensler T., Heidecke C.D., Hecker H. et al. Increased susceptibility to postoperative sepsis in patients with impaired monocyte IL-12 production // J. Immunol. – 1998. – Vol. 161, N. 5. – P. 2655–2659.

42. Steinhausen M.L., Hogaboam C.M., Lukacs N., et al. Multiple roles for IL- 12 in a model of acute septic peritonitis // J Immunol. – 1999. – Vol. 162, N. 9. – P. 5437–5443.

43. Zisman D.A., Kunkel S.L., Strieter R.M. et al. Anti-interleukin-12 therapy protects mice in lethal endotoxemia but impairs clearance in murine Escherichia coli peritoneal sepsis // Shock. – 1997. – Vol. 8, N. 5. – P. 349–356.

44. Weighardt H., Heidecke C.D., Westerholt A. et al. Impaired monocyte IL-12 production before surgery as a predictive factor for the lethal outcome of postoperative sepsis // Ann. Surg. – 2002. – Vol. 235, N. 4.– P. 560–567.

45. Cavaillon J.M., Annane D. Compartmentalization of the inflammatory response in sepsis and SIRS // J. Endotoxin. Res. – 2006. – Vol. 12, N. 3. – P. 151–170.

46. Giamarellos-Bourboulis E.J., Tsaganos T., Spyridaki E. et al. Early changes of CD4-positive lymphocytes and NK cells in patients with severe Gram-negative sepsis // Crit. Care. – 2006. – Vol. 10, N. 6. – P. R166.

47. Gogos C., Kotsaki A., Pelekanou A. et al. Early alterations of the innate and adaptive immune statuses in sepsis according to the type of underlying infection // Crit. Care. – 2010. – Vol. 14, N. 3. – P. R96.

48. Pelekanou A., Tsangaris I., Kotsaki A. et al. Decrease of CD4-lymphocytes and apoptosis of CD14-monocytes are characteristic alterations in sepsis caused by ventilator-associated pneumonia: results from an observational study // Crit. Care. – 2009. – Vol. 13, N. 6. – P. R172.

49. Adib-Conquy M., Cavaillon J.M. Compensatory anti-inflammatory response syndrome // Thromb. Haemost. – 2009. – Vol. 101, N. 1.– P. 36–47.

50. Holub M, Kluckova Z, Helcl M. et al. Lymphocyte subset numbers depend on the bacterial origin of sepsis // Clin. Microbiol. Infect. – 2003. – Vol. 9, N. 3. - P. 202–211.

51. Roth G., Moser B., Krenn C. et al. Susceptibility to programmed cell death in T-lymphocytes from septic patients: a mechanism for lymphopenia and Th2 predominance // Biochem. Biophys. Res. Commun. – 2003. – Vol. 308, N. 4. - P. 840–846.

52. Venet F., Davin F., Guignant C. et al. Early assessment of leukocyte alterations at diagnosis of septic shock // Shock. – 2010. – Vol. 34, N. 4. – P. 358–363.

53. Monneret G., Debard A.L., Venet F. et al. Marked elevation of human circulating CD4+CD25+ regulatory T cells in sepsis-induced immunoparalysis // Crit. Care Med. – 2003. – Vol. 31, N. 7. – P. 2068–2071.

54. Tschaikowsky K., Hedwig-Geissing M., Schiele A. et al. Coincidence of pro- and anti-inflammatory responses in the early phase of severe sepsis: longitudinal study of mononuclear histocompatibility leukocyte antigen-DR expression, procalcitonin, C-reactive protein, and changes in T-cell subsets in septic and postoperative patients // Crit. Care Med. – 2002. – Vol. 30, N. 5. – P. 1015–1023.

55. Remick D.G. Pathophysiology of Sepsis // Am J. Pathol. – 2007. – Vol. 170, N. 5. – P. 1435–1444.

56. Shimaoka M., Park E.J. Advances in understanding sepsis // Eur. J. Аnaesthesiol. Suppl. – 2008. – Vol. 42. – P. 146–153.

57. Wesche-Soldato D.E., Lomas-Neira J.L., Perl M. et al. The role and regulation of apoptosis in sepsis // J. Endotoxin. Res. – 2005. – Vol. 11, N. 6. – P. 375–382.

58. Chung C.S., Chaudry I.H., Ayala A. The apoptotic response of the lymphoid immune system to trauma, shock and sepsis // Yearbook of Intensive Care and Emergency Medicine / J.L. Vincent. – Berlin: Springer-Verlag, 2000. – P. 27–40.

59. Hotchkiss R.S., Tinsley K.W., Swanson P.E. et al. Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans // J. Immunol. – 2001. – Vol. 166, N. 11. – P. 6952–6963.

60. Hotchkiss R.S., Osmon S.B., Chang K.C. et al. Accelerated lymphocyte death in sepsis occurs by both the death receptor and mitochondrial pathways // J. Immunol. – 2005. – 174, N. 8. – P. 5110–5118.

61. Le Tulzo Y., Pangault C., Gacouin A. et al. Early circulating lymphocyte apoptosis in human septic shock is associated with poor outcome // Shock. – 2002. – Vol. 18, N. 6. – P. 487–494.

62. De Freitas I., Fernandez-Somoza M., Essenfeld-Sekler E., Cardier J.E. Serum levels of the apoptosis-associated molecules, tumor necrosis factor-a/tumor necrosis factor type-I receptor and Fas/FasL, in sepsis // Chest. – 2004. – Vol. 125, N. 6. – P. 2238–2246.

63. Hotchkiss R.S., Swanson P.E., Knudson C.M. et al. Overexpression of Bcl-2 in transgenic mice decreases apoptosis and improves survival in sepsis // J. Immunol. – 1999. – Vol. 162, N. 7. – P. 4148–4156.

64. Lekkou A., Karakantza M., Mouzaki A. et al. Cytokine production and monocyte HLA-DR expression as predictors of outcome for patients with community-acquired severe infections // Clin. Diagn. Lab. Immu￾nol. – 2004. – Vol. 11, N. 1. – P. 161–167.

65. Oczenski W., Krenn H., Jilch R. et al. HLA-DR as a marker for increased risk for systemic inflammation and septic complications after cardiac surgery // Intensive Care Med. – 2003. – Vol. 29, N. 8. – P. 1253–1257.

66. Kim O.Y., Monsel A., Bertrand M. et al. Differential down-regulation of HLA-DR on monocyte subpopulations during systemic inflammation // Crit. Care. – 2010. – Vol. 14, N. 2. – P. R61–73.

67. Saenz J.J., Izura J.J., Manrique A. et al. Early prognosis in severe sepsis via analyzing the monocyte immunophenotype // Intensive Care Med. – 2001. – Vol. 27, N. 9. – P. 970–977.

68. Monneret G., Voirin N., Krawice-Radanne I. et al. Soluble human leukocyte antigen-G5 in septic shock: marked and persisting elevation as a predictor of survival // Crit. Care Med. – 2007. – Vol. 35, N. 8. – P. 1942– 1947.

69. Cavaillon J.M., Adib-Conquy M. Immune status in sepsis: the bug, the site of infection and the severity can make the difference // Crit. Care. – 2010. – Vol. 14, N. 3. – P. 167.

70. Seidelin J.B., Nielsen C.H., Strøm J. Soluble L-selectin levels predict survival in sepsis // Intensive Care Med. – 2002. – Vol. 28, N. 11. – P. 1613– 1618.

71. Wunder C., Eichelbronner O., Roewer N. Are IL-6, IL-10 and PCT plasma concentrations reliable for prediction in severe sepsis? A comparison with APACHE II SAPS II // Inflamm. Res. – 2004. – Vol. 53, N. 3. – P. 158–163.

72. Arnalich F., Garcia-Palomero E., Lopez J. et al. Predictive value of nuclear factor kappaB activity and plasma cytokine levels in patients with sep￾sis // Infect. Immun. – 2000. – Vol. 68, N. 4. – P. 1942–1945.

73. Ikuta S., Ono S., Kinoshita M. et al. Interleukin-18 concentration in the peritoneal fluid correlates severity of peritonitis // Am J Surg. – 2003. – Vol. 185, N. 6. – P. 550–555.

74. Akira S. The role of IL-18 in innate immunity // Curr. Opin. Immunol. – 2000. – Vol. 12, N. 1. – P. 59–63.

75. Emmanuilidis K., Weighardt H., Matevossian E. et al. Differential regulation of systemic IL-18 and IL-12 release during postoperative sepsis: high serum IL-18 as an early predictive indicator of lethal outcome // Shock. – 2002. – Vol. 18, N. 4. – P. 301–305.

76. Dandona P., Nix D., Wilson M.F. et al. Procalcitonin increase after endotoxin injection in normal subjects // J. Clin. Endocrin. Metab. – 1994. – Vol. 79, N. 6. – P. 1605–1658.

77. Oberhoffer M., Stonans I., Russwurm S. et al. Procalcitonin expression in human periferial blood mononuclear cells and its modulation by lypopolysachrides and sepsis-related cytocines in vitro // J. Lab. Clin. Med. – 1999. – Vol. 134, N. 1. – P. 49–55.

78. Dornbusch H.J., Strenger V., Sovinz P. et al. Non-infectious causes of elevated procalcitonin and C-reactive protein serum levels in pediatric patients with hematologic and oncologic disorders // Support Care Cancer. – 2008. – Vol. 16, N. 9. – P. 1035–1040.

79. Sauerland S., Hensler Th., Bouillon B. et al. Plasma levels of procalcitonin and neopterinn in multiple trauma patients with or without brain injury // J. Neurotrauma. – 2003. – Vol. 20, N. 10. – P. 953–960.

80. Maier M., Wutzler S., Lehnert M. et al. Serum procalcitonin levels in patients with multiple injuries including visceral trauma // J. Trauma. – 2009. – Vol. 66, N. 1. – P. 243–249.

81. Resch B., Gusenleitner W., Muller W.D. Procalcitonin and interleukin-6 in the diagnosis of early-onset sepsis of the neonate // Acta. Paediatr. – 2003. – Vol. 92, N. 2. – P. 243–245.

82. Tschaikowsky K., Hedwig-Geissing M., Braun G.G., Radespiel-Troeger M. Predictive value of procalcitonin, interleukin-6,and C-reactive protein for survival in postoperative patients with severe sepsis // J. Crit. Care. – 2011. – Vol. 26, N. 1. – P. 54–64.

83. Tsirpanlis G. Inflammation in Atherosclerosis and Other Conditions: A Response to Danger // Kidney Blood Press. Res. – 2005. – Vol. 28, N. 4. – P. 211–217.

84. Charles R.E., Ladoire S., Aho S. et al. Serum procalcitonin elevation in critically ill patients at the onset of bacteremia caused by either Gram negative or Gram positive bacteria // BMC Infect Dis. – 2008. – Vol. 8.– P. 38.

85. Yukioka H., Yoshida G., Kurita S., Kato N. Plasma procalcitonin in sepsis and organ failure // Ann. Acad. Med. Singapore. – 2001. – Vol. 30, N. 5. – P. 528–531.

86. Luzzani A., Polati E., Dorizzi R. et al. Comparison of procalcitonin and Creactive protemas markers of sepsis // Crit. Care Med. – 2003. – Vol. 31, N. 6. – P. 1737–1741.

87. Claeys R., Vinken S., Spapen H. et al. Plasma procalcitonin and C-reactive protein in acuteseptic shock: clinical and biological correlates // Crit. Care Med. – 2002. – Vol. 30, N. 4. – P. 757–762.

88. Мeisner M., Adina H., Schmidt J. Correlation of procalcitonin and Creactive protein to inflammation, complications, and outcome during the intensive care unit course of multiple-trauma patients // Crit. Care. – 2006. – Vol. 10, N. 1. – P. Rl.

89. Uzzan В., Cohen R., Nicolas P. et al. Procalcitonin as a diagnostic test for sepsis in criticalrylll adults and after surgery or trauma: a systematic review and meta-analysis // Crit. Care Med. – 2006. – Vol. 34, N. 7. – P. 1996–2003.

90. Beer S.,Weighardt H., Emmanuilidis K. et al. Systemic neuropeptide levels as predictive indicators for lethal outcome in patients with postoperative sepsis // Crit. Care Med. – 2002. – Vol. 30, N. 8. – P. 1794–1798.

91. McNelis J., Marini C., Kalimi R. et al. A comparison of predictive outcomes of APACHE II and SAPS II in a surgical intensive care unit // Am. J. Med. Qual. – 2001. – Vol. 16, N. 5. – P. 161–165.

92. Bernhagen J., Calandra T., Mitchell R.A. et al. MIF is a pituitaryderived cytokine that potentiates lethal endotoxaemia // Nature. – 1993. – Vol. 365. – P. 756–759.

93. Calandra T., Bernhagen J., Mitchell R.A., Bucala R. The macrophage is an important and previously unrecognised source of macrophage migration inhibitory factor // J. Exp. Med. – 1994. – Vol. 179, N. 6. – P. 1895– 1902.

94. Calandra T., Echtenacher B., Roy D.L. et al. Protection from septic shock by neutralization of macrophage migration inhibitory factor // Nat Med. – 2000. – Vol. 6, N. 2. – P. 164–170.

95. Riedemann N.C., Guo R.F., Ward P.A. Novel strategies for the treatment of sepsis // Nat. Med. – 2003. – Vol. 9, N. 5. – P. 517–524.

96. Frink M., van Griensven M., Kobbe P. et al. IL-6 predicts organ dysfunction and mortality in patients with multiple injuries // Scand. J. Trauma. Resusc. Emerg. Med. – 2009. – Vol. 17. – P. 49.

97. Fiuza C., Bustin M., Talwar S. et al. Inflammation-promoting activity of HMGB1 on human microvascular endothelial cells // Blood. – 2003. – Vol. 101, N. 7. – P. 2652–2660.

98. Hubbard L.L., Moore B.B. IRAK-M regulation and function in host defense and immune homeostasis // Infect. Dis. Rep. – 2010. – Vol. 2, N. 1. – P. e9.

99. Muzio M., Bosisio D., Polentarutti N. et al. Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells // J. Immunol. – 2000. – Vol. 164, N. 1. – P. 5998–6004.

100. Wesche H., Gao X., Li X. et al. IRAK-M is a novel member of the Pelle/interleukin-1 receptor-associated kinase (IRAK) family // J. Biol. Chem. – 1999. – Vol. 274, N. 27. – P. 19403–19410.

101. Li S., Strelow A., Fontana E.J., Wesche H. IRAK-4: a novel member of the IRAK family with the properties of an IRAK-kinase // Proc. Natl. Acad. Sci. USA. – 2002. – Vol. 99, N. 8. – P. 5567–5572.

102. Huber-Lang M., Sarma V.J., Lu K.T. et al. Role of C5a in multiorgan failure during sepsis // J. Immunol. – 2001. – Vol. 166, N. 2. – P. 1193–1199.

103. Riedemann N.C., Neff T.A., Guo R.F. et al. Protective effects of IL-6 blockade in sepsis are linked to reduced C5a receptor expression // J. Immunol. – 2003. – Vol. 170, N. 1. – P. 503–507.

104. Fang X.M., Schroder S., Hoeft A., Stuber F. Comparison of two polymorphisms of the interleukin-1 gene family: interleukin-1 receptor antagonist polymorphism contributes to susceptibility to severe sepsis // Crit. Care Med. – 1999. – Vol. 27, N. 7. – P. 1330–1334.

105. Moller H.J., Moestrup S.K., Weis N. et al. Macrophage serum markers in pneumococcal bacteremia: prediction of survival by soluble CD163 // Crit. Care Med. – 2006. – Vol. 34, N. 10. – P. 2561–2566.

106. Aalto H., Takala A., Kautiainen H., Repo H. Laboratory markers of systemic inflammation as predictors of bloodstream infection in acutely ill patients admitted to hospital in medical emergency // Eur. J. Clin. Microbiol. Infect. Dis. – 2004. – Vol. 23, N. 9. – P. 699–704.

107. Pilz G., Fraunberger P., Appel R. et al. Early prediction of outcome in score-identified, post-cardiac surgical patients at high risk for sepsis, using soluble tumor necrosis factor receptor-55 concentrations // Crit. Care Med. – 1996. – Vol. 24, N. 4. – P. 596–600.

108. Iglesias J., Marik P.E., Levine J.S. et al. Elevated serum levels of the type I and type II receptors for tumor necrosis factor-alpha as predictive factors for ARF in patients with septic shock // Am. J. Kidney Dis. – 2003. – Vol. 41, N. 1. – P. 62–75.

109. Brauner J.S., Rohde L.E., Clausell N. Circulating endothelin-1 and tumor necrosis factora: early predictors of mortality in patients with septic shock // Intensive Care Med. – 2000. – Vol. 26, N. 3. – P. 305–313.

110. Muller B., Peri G., Doni A. et al. Circulating levels of the long pentraxin PTX3 correlate with severity of infection in critically ill patients // Crit. Care Med. – 2001. – Vol. 29, N. 7. – P. 1404–1407.

111. Si-Tahar M., Touqui L., Chignard M. Innate immunity and inflammation - two facets of the same anti-infectious reaction // Clin. Exp. Immunol. – 2009. – Vol. 156, N. 2. – P. 194–198.


Дополнительные файлы

Для цитирования: Булава Г.В. ИММУНОЛОГИЧЕСКИЕ АСПЕКТЫ СЕПСИСА (ОБЗОР ИНОСТРАННОЙ ЛИТЕРАТУРЫ). Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь». 2013;(2):47-56.

For citation: Bulava G.V. IMMUNOLOGICAL ASPECTS OF SEPSIS (REVIEW OF FOREIGN LITERATURE). Russian Sklifosovsky Journal "Emergency Medical Care". 2013;(2):47-56. (In Russ.)

Просмотров: 234

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2223-9022 (Print)
ISSN 2541-8017 (Online)