Mechanical Circulatory Support in Patients with End-Stage Heart Failure: a Literature Review (Part 2)
https://doi.org/10.23934/2223-9022-2025-14-4-792802
Abstract
This article reviews modern technologies for durable mechanical circulatory support (dMCS) —implantable devices that replace or support cardiac function.
The process of improving circulatory support devices has spanned several decades. We have evolved from bulky first-generation pulsatile pumps to compact and reliable non-pulsatile flow pumps. Today, these highly effective systems are used in 95% of cases. Modern devices can serve not only as a bridge to heart transplantation for patients awaiting a donor organ, but also as ongoing therapy for patients who are not eligible for a heart transplant.
At the same time, trends toward improving the quality of medical care are also impacting the refinement of existing circulatory support techniques: minimally invasive devices for full and partial cardiac support are being developed; fully magnetically levitated centrifugal-flow left ventricular assist devices are becoming dominant; solutions for right ventricular and biventricular failure, including the total artificial heart, are emerging.
Sputnik portable circulatory support devices and STREAM CARDIO systems have been developed and are being used in Russia. They are comparable in efficacy and safety to their foreign counterparts, and in some respects (for example, antithrombogenic coating) they are superior. Their main advantage is their significantly lower cost and accessibility for Russian patients, which is critically important given the shortage of donor organs and the high cost of imported systems.
DMCS has become a life-saving and life-preserving standard practice in cardiac surgery. Given current demographic conditions, the growing proportion of patients with heart failure, and the chronic shortage of donor organs, further development and cost reduction of the aforementioned technologies is a strategic necessity for this country.
About the Authors
M. Sh. KhubutiyaRussian Federation
Mogeli Sh. Khubutiya, Academician of the Russian Academy of Sciences, Professor, President
Sukharevskaya Sq. 3, Moscow, 129090
A. S. Tokarev
Russian Federation
Aleksey S. Tokarev, Candidate of Medical Science, Research Associate, Department of Emergency Neurosurgery
Sukharevskaya Sq. 3, Moscow, 129090
N. V. Rubtsov
Russian Federation
Nikolay V. Rubtsov, Candidate of Medical Science, Research Associate, Scientific Department of Emergency Cardiac Surgery
Sukharevskaya Sq. 3, Moscow, 129090
M. V. Israpiev
Russian Federation
Magomed V. Israpiev, Specialist of the Organizational and Methodological Department for Inpatient Care
Sharikopodshipnikovskaya Str. 9, Moscow, 115088
I. G. Khutsishvili
Russian Federation
Levan G. Khutsishvili, Junior Researcher, Scientific Department of Emergency Cardiac Surgery, N.V. Sklifosovsky Research Institute for Emergency Medicine; Specialist of the Organizational and Methodological Department for Inpatient Care, Research Institute for Healthcare Organization and Medical Management
Sukharevskaya Sq. 3, Moscow, 129090,
Sharikopodshipnikovskaya Str. 9, Moscow, 115088
M. A. Sagirov
Russian Federation
Marat A. Sagirov, Head of the Scientific Department of Emergency Cardiac Surgery
Sukharevskaya Sq. 3, Moscow, 129090
I. A. Argir
Russian Federation
Ivan A. Argir, Junior Researcher, Scientific Department of Emergency Cardiac Surgery, N.V. Sklifosovsky Research Institute for Emergency Medicine; Specialist of the Organizational and Methodological Department for Inpatient Care, Research Institute for Healthcare Organization and Medical Management
Sukharevskaya Sq. 3, Moscow, 129090,
Sharikopodshipnikovskaya Str. 9, Moscow, 115088
References
1. Zakharevich VM, Khalilulin TA, Koloskova NN, Poptsov VN, Shevchenko AO, Saitgareev RSh, et al. Vozmozhnosti lecheniya legochnoy gipertenzii s ispol’zovaniem implantiruemoy sistemy dlitel’noy mekhanicheskoy podderzhki nasosnoy funktsii serdtsa. Russian Journal of Transplantology and Artificial Organs. 2018;20(Suppl 1.):133–134. (In Russ.)
2. Drobyshev AA, Buchnev AS, Itkin GP. Cravnitel’noe issledovanie raboty rotornykh nasosov pri modulyatsii vykhodnogo potoka v sisteme iskusstvennogo serdtsa i apparata iskusstvennogo krovoobrashcheniya. Russian Journal of Transplantology and Artificial Organs. 2018;20(Suppl 1.):129. (In Russ.)
3. Khalilulin TA. Dlitel’naya mekhanicheskaya podderzhka krovoobrashcheniya v lechenii potentsial’nykh retsipientov donorskogo serdtsa s kriticheskoy serdechnoy nedostatochnost’yu (kliniko-eksperimental’noe issledovanie): dr. med. sci. diss. synopsis. Moscow, 2019. (In Russ.)
4. Carrier M, Moriguchi J, Shah KB, Anyanwu AC, Mahr C, Skipper E, et al. Outcomes after heart transplantation and total artificial heart implantation: A multicenter study. J Heart Lung Transplant. 2021;40(3):220–228. PMID: 33341359 https://doi.org/10.1016/j.healun.2020.11.012
5. Gautier SV, Itkin GP, Shevchenko AO, Khalilulin TA, Kozlov VA. Durable Mechanical Circulation Support as an Alternative to Heart Transplantation. Russian Journal of Transplantology and Artificial Organs. 2016;18(3):128–136. (In Russ.) https://doi.org/10.15825/1995-1191-2016-3-128-136.
6. Voltolini A, Salvato G, Frigerio M, Cipriani M, Perna E, Pisu M, et al. Psychological outcomes of left ventricular assist device long-term treatment: A 2-year follow-up study. Artif Organs. 2020;44(1):67–71. PMID: 31267546. https://doi.org/10.1111/aor.13531
7. Khalilulin TA, Zacharevich VM, Poptsov VN, Itkin GP, Shevchenko AO, Saitgareev RSh, et al. Special Aspects of Implantation of a Heart Pump Support System AVK-N as a “Bridge” to Heart Transplantation. Russian Journal of Transplantology and Artificial Organs. 2018;20(1):13–22. (In Russ.) https://doi.org/10.15825/1995-1191-2018-1-13-22.
8. Gautier SV, Itkin GP, Shemakin SYu, Saitgareev RSh, Poptsov VN, Zakharevich VM, et al The First Experience in Clinical Application of Domestic Circulatory Support Device on Basis of Implantable Axial Pump for Two Stage Heart Transplantation. Russian Journal of Transplantology and Artificial Organs. 2013; 15(3):92–101. (In Russ.)
9. Agarwal S, High KM. Newer-generation ventricular assist devices. Best Pract Res Clin Anaesthesiol. 2012;26(2):117–130. PMID: 22910085. https://doi.org/10.1016/j.bpa.2012.01.003.
10. Lahpor JR. State of the art: implantable ventricular assist devices. Curr Opin Organ Transplant. 2009;14(5):554–559. PMID: 19667990. https://doi.org/10.1097/MOT.0b013e3283303750
11. Köhne I. Kontinuierlich fördernde Blutpumpen für die Langzeitherzunterstützung. Z Herz- Thorax- Gefäßchir. 2020;34(6):359–370. https://doi.org/10.1007/s00398-020-00398-8
12. Slaughter MS, Tsui SS, El-Banayosy A, Sun BC, Kormos RL, Mueller DK, et al. Results of a multicenter clinical trial with the Thoratec Implantable Ventricular Assist Device. J Thorac Cardiovasc Surg. 2007;133(6):1573–1580. PMID: 17532959 https://doi.org/10.1016/j.jtcvs.2006.11.050. Erratum in: J Thorac Cardiovasc Surg. 2007;134(3):A34
13. Kirklin JK, Pagani FD, Kormos RL, Stevenson LW, Blume ED, Myers SL, et al. Eighth annual INTERMACS report: Special focus on framing the impact of adverse events. J Heart Lung Transplant. 2017;36(10):1080–1086. PMID: 28942782 https://doi.org/10.1016/j.healun.2017.07.005
14. Mehra MR, Naka Y, Uriel N, Goldstein DJ, Cleveland JC Jr, Colombo PC, et al. A Fully Magnetically Levitated Circulatory Pump for Advanced Heart Failure. N Engl J Med. 2017;376(5):440–450. PMID: 27959709 https://doi.org/10.1056/NEJMoa1610426
15. Wu EL, Kleinheyer M, Ündar A. Pulsatile vs. continuous flow. In: Mechanical Circulatory and Respiratory Support. Elsevier Inc., 2018: 379–406 https://doi.org/10.1016/B978-0-12-810491-0.00012-6
16. Cherniavskiy AM, Karaskov AM, Doronin DV, Deryagin MN, Fomichev AV. The Results of Mechanical Heart Support Systems INCOR Implantation. Russian Journal of Transplantology and Artificial Organs. 2013;15(4):84–91. (In Russ.) https://doi.org/10.15825/1995-1191-2013-4-84-91
17. Camboni D, Zerdzitzki M, Hirt S, Tandler R, Weyand M, Schmid C. Reduction of INCOR® driveline infection rate with silicone at the driveline exit site. Interact Cardiovasc Thorac Surg. 2017;24(2):222–228. PMID: 27702831. https://doi.org/10.1093/icvts/ivw336
18. Schmid C, Tjan TD, Etz C, Schmidt C, Wenzelburger F, Wilhelm M, et al. First clinical experience with the Incor left ventricular assist device. J Heart Lung Transplant. 2005;24(9):1188–1194. PMID: 16143232. https://doi.org/10.1016/j.healun.2004.08.024.
19. Tarro Genta F, Colajanni E, Sbarra P, Tidu M, Rinaldi M, Bosimini E. Flow mediated dilation in patient with Berlin Heart Incor left ventricle assist device. Monaldi Arch Chest Dis. 2008;70(1):38–40. PMID: 18592941. https://doi.org/10.4081/monaldi.2008.435
20. Timms D. A review of clinical ventricular assist devices. Med Eng Phys. 2011;33(9):1041–1047. PMID: 21665512 https://doi.org/10.1016/j.medengphy.2011.04.010.
21. Marasco SF, Farag J, Kure C, Summerhayes R, Bailey M, McGiffin D. A real-life experience with HeartMate III. J Card Surg. 2019;34(10):1031–1036. PMID: 31376201 https://doi.org/10.1111/jocs.14190
22. Schettle S, Stulak J, Alnsasra H, Clavell A. Dizziness in the Heartmate III patient. Heart Lung. 2019;48(4):320. PMID: 31047717. https://doi.org/10.1016/j.hrtlng.2019.04.004
23. Khayata M, ElAmm CA, Sareyyupoglu B, Zacharias M, Oliveira GH, Medalion B. HeartMate II pump exchange with HeartMate III implantation to the descending aorta. J Card Surg. 2019;34(1):47–49. PMID: 30597627. https://doi.org/10.1111/jocs.13969
24. Konukoğlu O, Mansuroğlu D, Yıldırım Ö, Bakshaliyev S, Sever K, Balkanay M. Outflow graft twisting of Heartmate III left ventricular-assisted device: A case report. Turk Gogus Kalp Damar Cerrahisi Derg. 2019;27(4):568–571. PMID: 32082927 https://doi.org/10.5606/tgkdc.dergisi.2019.17871
25. Krabatsch T, Netuka I, Schmitto JD, Zimpfer D, Garbade J, Rao V, et al. Heartmate 3 fully magnetically levitated left ventricular assist device for the treatment of advanced heart failure - 1 year results from the Ce mark trial. J Cardiothorac Surg. 2017;12(1):23. PMID: 28376837 https://doi.org/10.1186/s13019-017-0587-3
26. Zimpfer D, Netuka I, Schmitto JD, Pya Y, Garbade J, Morshuis M, et al. Multicentre clinical trial experience with the HeartMate 3 left ventricular assist device: 30-day outcomes. Eur J Cardiothorac Surg. 2016;50(3):548–554. PMID: 27436871 https://doi.org/10.1093/ejcts/ezw169
27. Barac YD, Schroder JN, Daneshmand MA, Patel CB, Milano CA. Heartmate III Replacement for Recurring Left Ventricular Assist Device Pump Thrombosis. ASAIO J. 2018;64(3):424–426. PMID: 29112021. https://doi.org/10.1097/MAT.0000000000000713
28. McGee E Jr, Chorpenning K, Brown MC, Breznock E, Larose JA, Tamez D. In vivo evaluation of the HeartWare MVAD Pump. J Heart Lung Transplant. 2014;33(4):366–371. PMID: 24238834 https://doi.org/10.1016/j.healun.2013.10.003. 3
29. Mesa KJ, Ferreira A, Castillo S, Reyes C, Wolman J, Casas F. The MVAD pump: motor stator core loss characterization. ASAIO J. 2015;61(2):122–126. PMID: 25423121 https://doi.org/10.1097/MAT.0000000000000180
30. Bartoli CR, Dowling RD. The future of adult cardiac assist devices: novel systems and mechanical circulatory support strategies. Cardiol Clin. 2011;29(4):559–582. PMID: 22062206 https://doi.org/10.1016/j.ccl.2011.08.013
31. Schramm R, Morshuis M, Schoenbrodt M, Boergermann J, Hakim-Meibodi K, Hata M, et al. Current perspectives on mechanical circulatory support. Eur J Cardiothorac Surg. 2019;55(Suppl 1):i31–i37. PMID: 30608535 https://doi.org/10.1093/ejcts/ezy444
32. Slaughter MS, Sobieski MA 2nd, Tamez D, Horrell T, Graham J, Pappas PS, et al. HeartWare miniature axial-flow ventricular assist device: design and initial feasibility test. Tex Heart Inst J. 2009;36(1):12–16. Erratum in: Tex Heart Inst J. 2009;36(2):186. PMID: 19436780
33. Tamez D, LaRose JA, Shambaugh C, Chorpenning K, Soucy KG, Sobieski MA, et al. Early feasibility testing and engineering development of the transapical approach for the HeartWare MVAD ventricular assist system. ASAIO J. 2014;60(2):170–177. PMID: 24399057 https://doi.org/10.1097/MAT.0000000000000038
34. Mohite PN, Sabashnikov A, Simon AR, Weymann A, Patil NP, Unsoeld B, et al. Does CircuLite Synergy assist device as partial ventricular support have a place in modern management of advanced heart failure? Expert Rev Med Devices. 2015;12(1):49–60. PMID: 25454250 https://doi.org/10.1586/17434440.2015.985208
35. Vandenberghe S, Nishida T, Segers P, Meyns B, Verdonck P. The impact of pump speed and inlet cannulation site on left ventricular unloading with a rotary blood pump. Artif Organs. 2004;28(7):660–667. PMID: 15209860 https://doi.org/10.1111/j.1525-1594.2004.07374.x
36. Barbone A, Pini D, Ornaghi D, Visigalli MM, Ardino L, Bragato R, et al. Sistema di assistenza ventricolare CircuLite Synergy: un nuovo approccio all’insufficienza cardiaca terminale [CircuLite Synergy ventricular assist device: a new approach to end-stage congestive heart failure]. G Ital Cardiol (Rome). 2014;15(2):116–122. Italian. PMID: 24625851 https://doi.org/10.1714/1424.15781
37. Gregory SD, Ng BC, Nadeem K. Biventricular assist devices. In: Gregory SD, Stevens MC, Fraser JF (eds.). Mechanical Circulatory and Respiratory Support. London UK: Academic Press. 2017:187–219 https://doi.org/10.1016/B978-0-12-810491-0.00006-0
38. Monteagudo-Vela M, Simon A, Panoulas V. Initial experience with Impella RP in a quaternary transplant center. Artif Organs. 2020;44(5):473–477. PMID: 31769040 https://doi.org/10.1111/aor.13610
39. Miyamoto T, Kado Y, Horvath DJ, Kuban BD, Sale S, Fukamachi K, et al. An advanced universal circulatory assist device for left and right ventricular support: First report of an acute in vivo implant. JTCVS Open. 2020;3:140–148. PMID: 36003855 https://doi.org/10.1016/j.xjon.2020.06.006
40. Sugiki H, Nakashima K, Vermes E, Loisance D, Kirsch M. Temporary right ventricular support with Impella Recover RD axial flow pump. Asian Cardiovasc Thorac Ann. 2009;17(4):395–400. PMID: 19713337 https://doi.org/10.1177/0218492309338121
41. Qureshi AM, Turner ME, O’Neill W, Denfield SW, Aghili N, Badiye A, et al. Percutaneous Impella RP use for refractory right heart failure in adolescents and young adults-A multicenter U.S. experience. Catheter Cardiovasc Interv. 2020;96(2):376–381. PMID: 32129576 https://doi.org/10.1002/ccd.28830
42. Stepanenko AV, Romantschenko OA, Dubaev AA, Dranishnikov NV, Schweiger M, Viereke J, et al. Mechanical circulatory support – a report from Europe’s largest single-center experience. Journal of Experimental and Clinical Surgery. 2012;5(1):145–153. (In Russ.) https://doi.org/10.18499/2070-478X-2012-5-1-145-153
43. Morshuis M, Rojas SV, Hakim-Meibodi K, Razumov A, Gummert JF, Schramm R. Heart transplantation after SynCardia® total artificial heart implantation. Ann Cardiothorac Surg. 2020;9(2):98–103. PMID: 32309157 https://doi.org/10.21037/acs.2020.03.12
44. Arabía FA, Cantor RS, Koehl DA, Kasirajan V, Gregoric I, Moriguchi JD, et al. Interagency registry for mechanically assisted circulatory support report on the total artificial heart. J Heart Lung Transplant. 2018;37(11):1304–1312. PMID: 29802083 https://doi.org/10.1016/j.healun.2018.04.004
45. Razumov A, Marcus-André D, Zittermann A, Schramm R, Hakim-Meibodi K, Gummert J, et al. SynCardia Total Artificial Heart: A17-Year Single-Center Experience with 187 Patients. Thorac Cardiovasc Surg. 2020;68(S 01):S1–S72 https://doi.org/10.1055/s-0040-1705362
46. Got’e SV, Khalilulin TA, Zakharevich VM, Koloskova NN, Poptsov VN, Shevchenko A.O., et al. Vozmozhnosti vosstanovleniya kachestva zhizni na fone raboty sistemy dlitel’noy mekhanicheskoy podderzhki krovoobrashcheniya. Russian Journal of Transplantology and Artificial Organs. 2019;21(Suppl):121–127. (In Russ.)
47. Shemakin SYu, Rodionova EV. Apparat vspomogatel’nogo krovoobrashcheniya levogo zheludochka serdtsa AVK-N “Sputnik”. Glavnyi vrach Uga Russia. 2014;(2):12–13. (In Russ.)
48. Grinvald VM, Kusmin GS, Masloboev YuP, Selishchev SV, Telyshev DV. First Domestic Ventricular Assistant Device AVK-N “Sputnik” on Basis of Implantable Blood Pump. Proceedings of Universities. Electronics. 2015;20(5):516–521. (In Russ.)
49. Almazovcentre. Vpervye v Rossii rebenku implantirovali iskusstvennyy levyy zheludochek serdtsa otechestvennogo proizvodstva. 2021. (In Russ.) Available at: http://www.almazovcentre.ru/?p=49402 [Accessed Feb 2, 2021].
50. Adaskin AV, Dozorov KN, Filatov IA, Itkin GP. Remote Monitoring of Patients With Long-Term Mechatronic Circulatory Support System. Russian Journal of Transplantology and Artificial Organs. 2016;18(2):65–73. (In Russ.) https://doi.org/10.15825/1995-1191-2016-2-65-73
51. Chernyavskiy AМ, Doronin DV, Fomichev AV, Karaskov AM. The initial experience of implantation of the left ventricular assist device “Sputnik” at a cardiac surgery center. Patologiya Krovoobrashcheniya I Kardiokhirurgiya. 2019;23(1):26–32. (In Russ.) https://doi.org/10.21688/1681-3472-2019-1-26-32
52. Banin EP, Gus’kov AM, Sorokin FD, Lomakin VO, Kuleshova MS. Otsenka vliyaniya sdvigovykh napryazheniy na potok krovi v osevom nasose vspomogatel’nogo krovoobrashcheniya. In: XXVIII Mezhdunarodnaya innovatsionno-orientirovannaya konferentsiya molodykh uchenykh i studentov (MIKMUS – 2016): sbornik trudov konferentsii. Moscow: Institut mashinovedeniya im. A.A. Blagonravova RAN Publ., 2017: 182–187. (In Russ.)
53. Griffith BP, Kormos RL, Borovetz HS, Litwak K, Antaki JF, Poirier VL, et al. HeartMate II left ventricular assist system: from concept to first clinical use. Ann Thorac Surg. 2001;71(3 Suppl):S116–S120; discussion S114–S116. PMID: 11265845 https://doi.org/10.1016/s0003-4975(00)02639-4
54. Köhne I. Haemolysis induced by mechanical circulatory support devices: unsolved problems. Perfusion. 2020;35(6):474–483. PMID: 32571178 https://doi.org/10.1177/0267659120931307
55. Zakharevich VM, Khalilulin TA, Koloskova NN, Poptsov VN, Shevchenko AO, Saitgareev RSh, et al. Kachestvo zhizni i fizicheskaya aktivnost’ na fone raboty implantiruemoy sistemy dlitel’noy mekhanicheskoy podderzhki nasosnoy funktsii serdtsa. Russian Journal of Transplantology and Artificial Organs. 2018;20 (Suppl 1):135–136. (In Russ.)
56. Chernyavskiy AM, Doronin DV, Karas’kov AM. Dvukhetapnaya transplantatsiya serdtsa posle dlitel’noy mekhanicheskoy podderzhki serdtsa. Russian Journal of Transplantology and Artificial Organs. 2017;19(Suppl.):59. (In Russ.)
57. Pons S, Sonneville R, Bouadma L, Styfalova L, Ruckly S, Neuville M, et al. Infectious complications following heart transplantation in the era of high-priority allocation and extracorporeal membrane oxygenation. Ann Intensive Care. 2019;9(1):17. PMID: 30684052 https://doi.org/10.1186/s13613-019-0490-2
Review
For citations:
Khubutiya M.Sh., Tokarev A.S., Rubtsov N.V., Israpiev M.V., Khutsishvili I.G., Sagirov M.A., Argir I.A. Mechanical Circulatory Support in Patients with End-Stage Heart Failure: a Literature Review (Part 2). Russian Sklifosovsky Journal "Emergency Medical Care". 2025;14(4):792-802. (In Russ.) https://doi.org/10.23934/2223-9022-2025-14-4-792802
JATS XML





































