Preview

Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»

Расширенный поиск

Возможности применения технологий искусственного интеллекта для оказания догоспитальной помощи при травмах

https://doi.org/10.23934/2223-9022-2025-14-3-609-618

Аннотация

Использование искусственного интеллекта (ИИ) на догоспитальном этапе оказания помощи при травмах осуществимо и имеет большие перспективы. Технологии ИИ позволяют сократить время оказания скорой медицинской помощи, принять объективные решения по сортировке, эвакуации и лечению пострадавших, способствуют координации действий и оптимальному распределению ресурсов спасательных служб в условиях мирного времени, чрезвычайных ситуаций и боевых действий. Алгоритмы ИИ, использующие технологии «компьютерного зрения», «обработки естественного языка» и мобильные беспроводные сенсорные системы, расширяют возможности дистанционного поиска и удалённой медицинской сортировки пострадавших. Системы ИИ, разработанные на основе алгоритмов машинного обучения, значительно превосходят традиционные инструменты сортировки по точности идентификации пациентов с тяжёлой травмой, нуждающихся в экстренных операциях и интенсивной терапии. ИИ может снизить число ошибок, но не заменяет профессиональный опыт специалиста, оказывающего догоспитальную помощь, и предоставляет лишь дополнительный инструмент поддержки принятия решений. Необходимо дальнейшее изучение возможностей использования технологий ИИ в реальных условиях оказания догоспитальной помощи при травмах.

Об авторах

П. А. Селиверстов
ФГБОУ ВО «Саратовский государственный медицинский университет им. В.И. Разумовского»
Россия

Селиверстов Павел Андреевич, доцент, кандидат медицинских наук, доцент кафедры общей хирургии,

410012, Саратов, ул. Большая Казачья, д. 112



Ю. Г. Шапкин
ФГБОУ ВО «Саратовский государственный медицинский университет им. В.И. Разумовского»
Россия

Шапкин Юрий Григорьевич, профессор, доктор медицинских наук, заведующий кафедрой общей хирургии,

410012, Саратов, ул. Большая Казачья, д. 112



Н. Ю. Стекольников
ФГБОУ ВО «Саратовский государственный медицинский университет им. В.И. Разумовского»
Россия

Стекольников Николай Юрьевич, доцент, кандидат медицинских наук, доцент кафедры общей хирургии,

410012, Саратов, ул. Большая Казачья, д. 112



Список литературы

1. Toy J, Warren J, Wilhelm K, Putnam B, Whitfield D, Gausche-Hill M, et al. Use of artificial intelligence to support prehospital traumatic injury care: A scoping review. J Am Coll Emerg Physicians Open. 2024;5(5): e13251. PMID: 39234533 https://doi.org/10.1002/emp2.13251

2. Alvi U, Khattak MAK, Shabir B, Malik AW, Muhammad SR. A Comprehensive Study on IoT Based Accident Detection Systems for Smart Vehicles. IEEE Access. 2020;8:122480–122497. https://doi.org/10.1109/ACCESS.2020.3006887

3. Hozhabr Pour H, Li F, Wegmeth L, Trense C, Doniec R, Grzegorzek M, et al. A Machine Learning Framework for Automated Accident Detection Based on Multimodal Sensors in Cars. Sensors (Basel). 2022;22(10):3634. PMID: 35632039 https://doi.org/10.3390/s22103634

4. Taamneh S, Taamneh MM. A machine learning approach for building an adaptive, real-time decision support system for emergency response to road traffic injuries. Int J Inj Contr Saf Promot. 2021;28(2):222–232. PMID: 33818273 https://doi.org/10.1080/17457300.2021.1907596

5. Assi K, Rahman SM, Mansoor U, Ratrout N. Predicting Crash Injury Severity with Machine Learning Algorithm Synergized with Clustering Technique: A Promising Protocol. Int J Environ Res Public Health. 2020;17(15):5497. PMID: 32751470 https://doi.org/10.3390/ijerph17155497

6. Mansoor U, Ratrout NT, Rahman SM, Assi K. Crash severity prediction using two-layer ensemble machine learning model for proactive emergency management. IEEE Access. 2020;8:210750-210762. https://doi.org/10.1109/ACCESS.2020.3040165

7. Zheng M, Li T, Zhu R, Chen J, Ma Z, Tang M. Traffic accident’s severity prediction: A deep-learning approach-based CNN Network. IEEE Access. 2019;7:39897-39910. https://doi.org/10.1109/ACCESS.2019.2903319

8. Chin KC, Cheng YC, Sun JT, Ou CY, Hu CH, Tsai MC, et al. Machine Learning-Based Text Analysis to Predict Severely Injured Patients in Emergency Medical Dispatch: Model Development and Validation. J Med Internet Res. 2022;24(6):e30210. PMID: 35687393 https://doi.org/10.2196/30210

9. Ceklic E, Ball S, Finn J, Brown E, Brink D, Bailey P, et al. Ambulance dispatch prioritisation for traffic crashes using machine learning: A natural language approach. Int J Med Inform. 2022;168:104886. PMID: 36306652 https://doi.org/10.1016/j.ijmedinf.2022.104886

10. Liang Y, Liu Y, Liu B, Xu A, Wang J. Deep Learning-Based Medical Information System in First Aid of Surgical Trauma. Comput Math Methods Med. 2022:8789920. PMID: 35469219 https://doi.org/10.1155/2022/8789920

11. Rickards CA, Vyas N, Ryan KL, Ward KR, Andre D, Hurst GM, et al. Are you bleeding? Validation of a machine-learning algorithm for determination of blood volume status: application to remote triage. J Appl Physiol (1985). 2014;116(5):486–494. PMID: 24408992 https://doi.org/10.1152/japplphysiol.00012.2013

12. Achkoski J, Koceski S, Bogatinov D, Temelkovski B, Stevanovski G, Kocev I. Remote triage support algorithm based on fuzzy logic. J R Army Med Corps. 2017;163(3):164–170. PMID: 27418264 https://doi.org/10.1136/jramc-2015-000616

13. Kim D, You S, So S, Lee J, Yook S, Jang DP, et al. A data-driven artificial intelligence model for remote triage in the prehospital environment. PLoS One. 2018;13(10):e0206006. PMID: 30352077 https://doi.org/10.1371/journal.pone.0206006

14. Reljin N, Zimmer G, Malyuta Y, Shelley K, Mendelson Y, Blehar DJ, et al. Using support vector machines on photoplethysmographic signals to discriminate between hypovolemia and euvolemia. PLoS One. 2018;13(3):e0195087. PMID: 29596477 https://doi.org/10.1371/journal.pone.0195087

15. Zhang W, Zhou Q, Li R, Niu F. Research on Camouflaged Human Target Detection Based on Deep Learning. Comput Intell Neurosci. 2022;2022:7703444. PMID: 36275951 https://doi.org/10.1155/2022/7703444

16. Al-Naji A, Perera AG, Mohammed SL, Chahl J. Life Signs Detector Using a Drone in Disaster Zones. Remote Sens. 2019;11:2441. https://doi.org/10.3390/rs11202441

17. Queirós Pokee D, Barbosa Pereira C, Mösch L, Follmann A, Czaplik M. Consciousness Detection on Injured Simulated Patients Using Manual and Automatic Classification via Visible and Infrared Imaging. Sensors (Basel). 2021;21(24):8455. PMID: 34960551 https://doi.org/10.3390/s21248455

18. Lu J, Wang X, Chen L, Sun X, Li R, Zhong W, et al. Unmanned aerial vehicle based intelligent triage system in mass-casualty incidents using 5G and artificial intelligence. World J Emerg Med. 2023;14(4):273–279. PMID: 37425090 https://doi.org/10.5847/wjem.j.1920-8642.2023.066

19. Chen Q, Qin Y, Jin Z, Zhao X, He J, Wu C, et al. Enhancing Performance of the National Field Triage Guidelines Using Machine Learning: Development of a Prehospital Triage Model to Predict Severe Trauma. J Med Internet Res. 2024;26:e58740. PMID: 39348683 https://doi.org/10.2196/58740

20. Adebayo O, Bhuiyan ZA, Ahmed Z. Exploring the effectiveness of artificial intelligence, machine learning and deep learning in trauma triage: A systematic review and meta-analysis. Digit Health. 2023;9:205 52076231205736. PMID: 37822960 https://doi.org/10.1177/2055207623 1205736

21. Bakidou A, Caragounis EC, Andersson Hagiwara M, Jonsson A, Sjöqvist BA, Candefjord S. On Scene Injury Severity Prediction (OSISP) model for trauma developed using the Swedish Trauma Registry. BMC Med Inform Decis Mak. 2023;23(1):206. PMID: 37814288 https://doi.org/10.1186/s12911-023-02290-5

22. Xu Y, Malik N, Chernbumroong S, Vassallo J, Keene D, Foster M, et al. Triage in major incidents: development and external validation of novel machine learning-derived primary and secondary triage tools. Emerg Med J. 2024;41(3):176–183. PMID: 37751994 https://doi.org/10.1136/emermed-2022-212440

23. Kim D, Chae J, Oh Y, Lee J, Kim IY. Automated remote decisionmaking algorithm as a primary triage system using machine learning techniques. Physiol Meas. 2021;42(2):025006. PMID: 33567409 https://doi.org/10.1088/1361-6579/abe524

24. Stallings JD, Laxminarayan S, Yu C, Kapela A, Frock A, Cap AP, et al. APPRAISE-HRI: an artificial intelligence algorithm for triage of hemorrhage casualties. Shock. 2023;60(2):199–205. PMID: 37335312 https://doi.org/10.1097/SHK.0000000000002166

25. Larsson A, Berg J, Gellerfors M, Gerdin Wärnberg M. The advanced machine learner XGBoost did not reduce prehospital trauma mistriage compared with logistic regression: a simulation study. BMC Med Inform Decis Mak. 2021;21(1):192. PMID: 34148560 https://doi.org/10.1186/s12911-021-01558-y

26. Candefjord S, Sheikh MA, Bangalore P, Buendia R. On-Scene Injury Severity Prediction (OSISP) machine learning algorithms for motor vehicle crash occupants in US. Journal of Transport & Health. 2021;22:101124. https://doi.org/10.1016/j.jth.2021.101124

27. Li Y, Wang L, Liu Y, Zhao Y, Fan Y, Yang M, et al. Development and Validation of a Simplified Prehospital Triage Model Using Neural Network to Predict Mortality in Trauma Patients: The Ability to Follow Commands, Age, Pulse Rate, Systolic Blood Pressure and Peripheral Oxygen Saturation (CAPSO) Model. Front Med (Lausanne). 2021;8:810195. PMID: 34957169 https://doi.org/10.3389/fmed.2021.810195

28. Choi Y, Park JH, Hong KJ, Ro YS, Song KJ, Shin SD. Development and validation of a prehospital-stage prediction tool for traumatic brain injury: a multicentre retrospective cohort study in Korea. BMJ Open. 2022;12(1):e055918. PMID: 35022177 https://doi.org/10.1136/bmjopen-2021-055918

29. Abe D, Inaji M, Hase T, Takahashi S, Sakai R, Ayabe F, et al. A Prehospital Triage System to Detect Traumatic Intracranial Hemorrhage Using Machine Learning Algorithms. JAMA Netw Open. 2022;5(6):e2216393. PMID: 35687335 https://doi.org/10.1001/jamanetworkopen.2022.16393

30. Moyer JD, Lee P, Bernard C, Henry L, Lang E, Cook F, et al. Machine learning-based prediction of emergency neurosurgery within 24 h after moderate to severe traumatic brain injury. World J Emerg Surg. 2022;17(1):42. PMID: 35922831 https://doi.org/10.1186/s13017-022-00449-5

31. Apiratwarakul K, Cheung LW, Tiamkao S, Phungoen P, Tientanopajai K, Taweepworadej W, et al. Smart Glasses: A New Tool for Assessing the Number of Patients in Mass-Casualty Incidents. Prehosp Disaster Med. 2022;37(4):480–484. PMID: 35757837 https://doi.org/10.1017/S1049023X22000929

32. Gan RK, Ogbodo JC, Wee YZ, Gan AZ, González PA. Performance of Google bard and ChatGPT in mass casualty incidents triage. Am J Emerg Med. 2024;75:72–78. PMID: 37967485 https://doi.org/10.1016/j.ajem.2023.10.034

33. Gan RK, Uddin H, Gan AZ, Yew YY, González PA. ChatGPT’s performance before and after teaching in mass casualty incident triage. Sci Rep. 2023;13(1):20350. PMID: 37989755 https://doi.org/10.1038/s41598-023-46986-0

34. Valiente Fernández M, García Fuentes C, Delgado Moya FP, Marcos Morales A, Fernández Hervás H, Barea Mendoza JA, et al. Could machine learning algorithms help us predict massive bleeding at prehospital level? Med Intensiva (Engl Ed). 2023;47(12):681–690. PMID: 37507314 https://doi.org/10.1016/j.medine.2023.07.007

35. Nederpelt CJ, Mokhtari AK, Alser O, Tsiligkaridis T, Roberts J, Cha M, et al. Development of a field artificial intelligence triage tool: Confidence in the prediction of shock, transfusion, and definitive surgical therapy in patients with truncal gunshot wounds. J Trauma Acute Care Surg. 2021;90(6):1054–1060. PMID: 34016929 https://doi.org/10.1097/TA.0000000000003155

36. Lammers D, Marenco C, Morte K, Conner J, Williams J, Bax T, et al. Machine Learning for Military Trauma: Novel Massive Transfusion Predictive Models in Combat Zones. J Surg Res. 2022;270:369–375. PMID: 34736129 https://doi.org/10.1016/j.jss.2021.09.017

37. Zadorozny EV, Weigel T, Galvagno SM, Brown JB, Guyette FX. Identifying Trigger Cues for Hospital Blood Transfusions Based on Ensemble Learning Methods. Int J Emerg Med. 2024;17(1):76. PMID: 38464129 https://doi.org/10.1186/s12245-024-00650-0

38. Nemeth C, Amos-Binks A, Rule G, Laufersweiler D, Keeney N, Flint I, et al. TCCC Decision Support with Machine Learning Prediction of Hemorrhage Risk, Shock Probability. Mil Med. 2023;188(Suppl 6):659– 665. PMID: 37948287 https://doi.org/10.1093/milmed/usad298

39. Convertino VA, Techentin RW, Poole RJ, Dacy AC, Carlson AN, Cardin S, et al. AI-Enabled Advanced Development for Assessing Low Circulating Blood Volume for Emergency Medical Care: Comparison of Compensatory Reserve Machine-Learning Algorithms. Sensors (Basel). 2022;22(7):2642. PMID: 35408255 https://doi.org/10.3390/s22072642

40. Gupta JF, Arshad SH, Telfer BA, Snider EJ, Convertino VA. Noninvasive Monitoring of Simulated Hemorrhage and Whole Blood Resuscitation. Biosensors (Basel). 2022;12(12):1168. PMID: 36551134 https://doi.org/10.3390/bios12121168

41. Koons NJ, Owens GA, Parsons DL, Schauer SG, Buller JL, Convertino VA. Combat medic testing of a novel monitoring capability for early detection of hemorrhage. J Trauma Acute Care Surg. 2020;89(2S Suppl 2):S146– S152. PMID: 32118826 https://doi.org/10.1097/TA.0000000000002649

42. Liu G, Xu J, Wang C, Yu M, Yuan J, Tian F, et al. A machine learning method for predicting the probability of MODS using only non-invasive parameters. Comput Methods Programs Biomed. 2022;227:107236. PMID: 36384060 https://doi.org/10.1016/j.cmpb.2022.107236

43. Kawai Y, Yamamoto K, Miyazaki K, Asai H, Fukushima H. Explainable Prediction Model of the Need for Emergency Hemostasis Using Field Information During Physician-Staffed Helicopter Emergency Medical Service Interventions: A Single-Center, Retrospective, Observational Pilot Study. Air Med J. 2023;42(5):336–342. PMID: 37716804 https://doi.org/10.1016/j.amj.2023.04.005

44. Hernandez Torres SI, Ruiz A, Holland L, Ortiz R, Snider EJ. Evaluation of Deep Learning Model Architectures for Point-of-Care Ultrasound Diagnostics. Bioengineering (Basel). 2024;11(4):392. PMID: 38671813 https://doi.org/10.3390/bioengineering11040392

45. Montgomery S, Li F, Funk C, Peethumangsin E, Morris M, Anderson JT, et al. Detection of pneumothorax on ultrasound using artificial intelligence. J Trauma Acute Care Surg. 2023;94(3):379–384. PMID: 36730087 https://doi.org/10.1097/TA.0000000000003845

46. Cheng CY, Chiu IM, Hsu MY, Pan HY, Tsai CM, Lin CR. Deep Learning Assisted Detection of Abdominal Free Fluid in Morison’s Pouch During Focused Assessment with Sonography in Trauma. Front Med (Lausanne). 2021;8:707437. PMID: 34631730 https://doi.org/10.3389/fmed.2021.707437

47. Leo MM, Potter IY, Zahiri M, Vaziri A, Jung CF, Feldman JA. Using Deep Learning to Detect the Presence and Location of Hemoperitoneum on the Focused Assessment with Sonography in Trauma (FAST) Examination in Adults. J Digit Imaging. 2023;36(5):2035–2050. PMID: 37286904 https://doi.org/10.1007/s10278-023-00845-6

48. Candefjord S, Nguyen L, Buendia R, Oropeza–Moe M, Andersen NG, Fhager A, et al. A wearable microwave instrument can detect and monitor traumatic abdominal injuries in a porcine model. Sci Rep. 2021;11(1):23220. PMID: 34853326 https://doi.org/10.1038/s41598-021-02008-5

49. Jin X, Frock A, Nagaraja S, Wallqvist A, Reifman J. AI algorithm for personalized resource allocation and treatment of hemorrhage casualties. Front Physiol. 2024;15:1327948. PMID: 38332989 https://doi.org/10.3389/fphys.2024.1327948

50. Brattain LJ, Pierce TT, Gjesteby LA, Johnson MR, DeLosa ND, Werblin JS, et al. AI-Enabled, Ultrasound-Guided Handheld Robotic Device for Femoral Vascular Access. Biosensors (Basel). 2021;11(12):522. PMID: 34940279 https://doi.org/10.3390/bios11120522

51. Birch E, Couperus K, Gorbatkin C, Kirkpatrick AW, Wachs J, Candelore R, et al. Trauma THOMPSON: Clinical Decision Support for the Frontline Medic. Mil Med. 2023;188(Suppl 6):208–214. PMID: 37948255 https://doi.org/10.1093/milmed/usad087

52. Timbi-Sisalima C, Rodas EB, Salamea JC, Sacoto H, Monje-Ortega D, Robles-Bykbaev V. An Intelligent Ecosystem for Providing Support in Prehospital Trauma Care in Cuenca, Ecuador. Stud Health Technol Inform. 2015;216:329–332. PMID: 26262065

53. Mammas CS, Mamma AS. Remote Monitoring, AI, Machine Learning and Mobile Ultrasound Integration upon 5G Internet in the Prehospital Care to Support the Golden Hour Principle and Optimize Outcomes in Severe Trauma and Emergency Surgery. Stud Health Technol Inform. 2024;316:1807–1811. PMID: 39176842 https://doi.org/10.3233/SHTI240782


Рецензия

Для цитирования:


Селиверстов П.А., Шапкин Ю.Г., Стекольников Н.Ю. Возможности применения технологий искусственного интеллекта для оказания догоспитальной помощи при травмах. Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь». 2025;14(3):609-618. https://doi.org/10.23934/2223-9022-2025-14-3-609-618

For citation:


Seliverstov P.A., Shapkin Yu.G., Stekolnikov N.Yu. Possibilities of Using Artificial Intelligence Technologies in Prehospital Trauma Care. Russian Sklifosovsky Journal "Emergency Medical Care". 2025;14(3):609-618. (In Russ.) https://doi.org/10.23934/2223-9022-2025-14-3-609-618

Просмотров: 3


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2223-9022 (Print)
ISSN 2541-8017 (Online)