Evaluation of the Use of the Innovative Nutritional Mixture Nutriset D in the Nutritional Support Program for Patients with Acute Respiratory Distress Syndrome
https://doi.org/10.23934/2223-9022-2025-14-2-371-378
Abstract
AIM OF STUDY Evaluation of the use of the nutritional mixture Nutriset D in the nutritional support program for patients with acute respiratory distress syndrome according to the results of monitoring indicators of nutritional status, gas exchange, organ disorders, carbohydrate metabolism and criteria for tolerance of the enteral nutrition.
MATERIAL AND METHODS The study involved 10 patients with acute respiratory distress syndrome. Energy consumption, plasma albumin, glucose and absolute lymphocyte counts, and the severity of multiple organ failure were determined. Statistical analysis was performed.
RESULTS Positive dynamics of energy consumption, oxygenation index, plasma albumin content, absolute lymphocyte count, glucose, as well as a decrease in multiple organ failure were revealed.
CONCLUSION 1. The use of Nutriset D mixture in patients with acute respiratory distress syndrome contributed to a decrease in energy consumption, an increase in the blood albumin and the absolute number of lymphocytes. 2. The use of Nutriset D mixture in patients with acute respiratory distress syndrome contributed to a decrease in the severity of organ failure and gas exchange disorders. 3. Administration of Nutriset D mixture to patients with acute respiratory distress syndrome did not cause bloating or discharge of the administered mixture through the tube, which indicated its complementary tolerance, absorption and digestibility.
About the Authors
A. I. MalyukRussian Federation
Anatoly I. Malyuk - Candidate of Medical Sciences, Chief Physician of the A.N. Kabanov City Clinical Hospital.
Pereleta Str. 7, Omsk, 644112
A. O. Girsh
Russian Federation
Andrey O. Girsh - Professor, Doctor of Medical Sciences, Professor of the Department of General Surgery, Omsk State Medical University.
Lenina Str. 12, Omsk, 644099
S. S. Stepanov
Russian Federation
Sergey S. Stepanov - Doctor of Medical Sciences, Senior Researcher, Department of Histology, Cytology and Embryology, Omsk State Medical University.
Lenina Str. 12, Omsk, 644099
References
1. Petrikov SS, Khubutiya MSh, Popova TS (eds.) Parenteral’noe i enteral’noe pitanie. 2nd ed., add. and rev. Moscow: GEOTAR-Media Publ.; 2023. (In Russ.)
2. Obshcherossiyskaya obshchestvennaya organizatsiya “Federatsiya anesteziologov i reanimatologov”. Metabolicheskiy monitoring i nutritivnaya podderzhka pri provedenii dlitel’noy iskusstvennoy ventilyatsii legkikh. Klinicheskie rekomendatsii. Moscow; 2021. (In Russ.) Available at: https://gkb05.ru/wp-content/uploads/2023/10/mr_np_na_ivl.pdf [Accessed May 23, 2025].
3. Chapman MJ, Nguyen NQ, Deane AM. Gastrointestinal dysmotility: Evidence and clinical management. Curr Opin Clin Nutr Metab Care. 2013;16(2):209–216. PMID: 23334174 https://doi.org/10.1097/MCO.0b013e32835c1fa5
4. Chapman MJ, Fraser RJ, Matthews G, Russo A, Bellon M, Besanko LK, et al. Glucose absorption and gastric emptying in critical illness. Crit Care. 2009;13(4):R140. PMID:19712450 https://doi.org/10.1186/cc8021
5. Gel’fand BR (ed.). Sepsis: klassifikatsiya, kliniko-diagnosticheskaya kontseptsiya i lechenie. 4th ed., add. and rev. Moscow: Meditsinskoe informatsionnoe agentstvo Publ.; 2017. (In Russ.)
6. Mazurok VA, Golovkin AS, Bautin AE, Gorelov II, Belikov VL, Slivin ОА. Gastrointestinal Tract in Clinical Illness: the First Who Suffers, and the Last Who Recieves the Attention. Annals of Critical Care. 2016;(2):28–37. (In Russ.)
7. Shenderov BA, Sinitsa AV, Zakharchenko MM, Lang C. Metabiotics. Present state, challenges and perspectives. Springer Cham; 2020.
8. Borovikov VP. Populyarnoe vvedenie v sovremennyy analiz dannykh v sisteme STATISTICA. Metodologiya i tekhnologiya sovremennogo analiza dannykh. Moscow: Goryachaya liniya – Telekom Publ., 2013 (In Russ.)
9. Desaka N, Ota C, Nishikawa H, Yasuda K, Ishii N, Bito T, et al. Streptococcus thermophilus prolongs lifespan by activating the DAF-16-mediated antioxidant pathway in Caenorhabditis elegans. J Clin Biochem Nutr. 2022;70(1):7–13. PMID: 35068675 https://doi.org/10.3164/jcbn.21–56
10. Herviou P, Balvay A, Bellet D, Bobet S, Maudet C, Staub J, et al. Transfer of the Integrative and Conjugative Element ICESt3 of Streptococcus thermophilus in Physiological Conditions Mimicking the Human Digestive Ecosystem. Microbiol Spectr. 2023;11(3):e0466722. PMID:36995244 https://doi.org/10.1128/spectrum.04667-22
11. Salini F, Iacumin L, Comi G, Dicks LMT. Thermophilin 13: In Silico Analysis Provides New Insight in Genes Involved in Bacteriocin Production. Microorganisms. 2023;11(3):611–618. PMID: 36985185 https://doi.org/10.3390/microorganisms11030611
12. Roux E, Nicolas A, Valence F, Siekaniec G, Chuat V, Nicolas J, et al. The genomic basis of the Streptococcus thermophilus health-promoting properties. BMC Genomics. 2022;23(1):210. PMID: 35291951 https://doi.org/10.1186/s12864-022-08459-y
13. Kang X, Liang H, Luo Y, Li Z, He F, Han X, et al. Biol Streptococcus thermophilus MN-ZLW-002 Can Inhibit Pre-adipocyte Differentiation through Macrophage Activation. Pharm Bull. 2021;44(3):316–324. PMID:33390424 https://doi.org/10.1248/bpb.b20-00335
14. Muderspach SJ, Fredslund F, Volf V, Poulsen JN, Blicher TH, Clausen MH, et al. Engineering the substrate binding site of the hyperthermostable archaeal endo-β-1,4-galactanase from Ignisphaera aggregans. Biotechnol Biofuels. 2021 Sep 16;14(1):183. PMID: 34530892 https://doi.org/10.1186/s13068-021-02025-6
15. Roy D. Probiotics. In: Moo-Young M (eds). Comprehensive Biotechnology. 3rd ed. Pergamon; 2019.
16. Kozin SV, Kravtsov AA, Kravchenko SV, Ivashchenko LI. Antioxidant and anxiolytic effect of Bifidobacterium adolescentis and Lactobacillus acidophilus under conditions of normobaric hypoxia with hypercapnia. Problems of Nutrition. 2021;90(2):63–72. (In Russ.) https://doi.org/10.33029/0042-8833-2021-90-2-63-72
17. Derrien M, Turroni F, Ventura M, van Sinderen D. Insights into endogenous Bifidobacterium species in the human gut microbiota during adulthood. Trends Microbiol. 2022;30(10):940–947. PMID:35577716 https://doi.org/10.1016/j.tim.2022.04.004
18. Hidalgo-Cantabrana C, Delgado S, Ruiz L, Ruas-Madiedo P, Sánchez B, Margolles A. Bifidobacteria and Their Health-Promoting Effects. Microbiol Spectr. 2017;5(3):756–768. PMID:28643627 https://doi.org/10.1128/microbiolspec.bad-0010-2016
19. Anjum FM, Saeed F, Afzaal M, Ikram A, Azam M The effect of thermal processing on probiotics stability. In: Advances in Dairy Microbial Products. Woodhead Publishing; 2022. Chapt. 20.pp. 295–302. https://doi.org/10.1016/B978-0-323-85793-2.00004-7
20. Uusitupa HM, Rasinkangas P, Lehtinen MJ, Mäkelä SM, Airaksinen K, Anglenius H, et al. Bifidobacterium animalis subsp. lactis 420 for Metabolic Health: Review of the Research. Nutrients. 2020;12(4):892. PMID: 32218248 https://doi.org/10.3390/nu12040892
21. Bonfrate L, Di Palo DM, Celano G, Albert A, Vitellio P, De Angelis M, et al. Effects of Bifidobacterium longum BB536 and Lactobacillus rhamnosus HN001 in IBS patients. Eur J Clin Invest. 2020;50(3):e13201. PMID: 31960952 https://doi.org/10.1111/eci.13201
22. Caviglia GP, Tucci A, Pellicano R, Fagoonee S, Rosso C, Abate ML, et al. Clinical response and changes of cytokines and zonulin levels in patients with diarrhoea-predominant irritable bowel syndrome treated with bifidobacterium longum ES1 for 8 or 12 weeks: a preliminary report. J Clin Med. 2020;9(8):235323–59. PMID: 32717980 https://doi.org/10.3390/jcm9082353
23. Yang J, Yang H. Antibacterial Activity of Bifidobacterium breve Against Clostridioides difficile. Front Cell Infect Microbiol. 2019;9:288. PMID: 31440478 https://doi.org/10.3389/fcimb.2019.00288 eCollection 2019.
24. Zakharova YuV, Levanova LA. Current Opinion on Taxonomy, Morphological, and Functional Properties of Bifidobacteria. Fundamental and Clinical Medicine. 2018;3(1):90–101. (In Russ.)
25. Bukharin OV, Ivanova EV, Chaynikova IN, Perunova NB, Nikiforov IA, Chelpachenko OE, et al. In vitro effects of intestinal microsymbionts on the cytokine production. Medical Immunology (Russia). 2023;25(6):1371–1388. (In Russ.) https://doi.org/10.15789/1563-0625-IVE-2622
26. Buchta Rosean C, Feng TY, Azar FN, Rutkowski MR. Impact of the microbiome on cancer progression and response to anti-cancer therapies. Adv Cancer Res. 2019;143:255–294. PMID: 31202360 https://doi.org/10.1016/bs.acr.2019.03.005
27. Fidanza M, Panigrahi P, Kollmann TR. Lactiplantibacillus plantarum-Nomad and Ideal Probiotic. Front Microbiol. 2021;12:7136. PMID: 34690957 https://doi.org/10.3389/fmicb.2021.712236 eCollection 2021.
28. El Kafsi H, Binesse J, Loux V, Buratti J, Boudebbouze S, Dervyn R, еt al. Lactobacillus delbrueckii ssp. lactis and ssp. bulgaricus: a chronicle of evolution in action. BMC Genomics. 2014;15(1):407. PMID: 24884896 https://doi.org/10.1186/1471-2164-15-407
29. Poh CL, Khalid K, Lim Y. Probiotics: A solution to the prevention of antimicrobial resistance. In: Dhara AK, Nayak AK, Chattopadhyay D, eds. Antibiotics – Therapeutic Spectrum and Limitations. Academic Press; 2023. Chapt. 23. pp.595–609. https://doi.org/10.1016/B978-0-323-95388-7.00017-6
30. Griffiths MW, Tellez AM. Lactobacillus helveticus: the proteolytic system. Front Microbiol. 2013;4:30. PMID: 23467265 https://doi.org/10.3389/fmicb.2013.00030 eCollection 2013.
31. Taverniti V, Guglielmetti S. Health-promoting properties of Lactobacillus helveticus. Front Microbio. 2012;3:392. PMID: 23181058 https://doi.org/10.3389/fmicb.2012.00392 eCollection 2012.
32. Nora H, Ali A, Chaymae B, Haytham B, Mouncif M, Douaae O-Y, et al. Probiotic properties and antibiotic susceptibility assessment of Streptococcus thermophilus isolates. Research Square; 2023. Available at: https://www.researchsquare.com/article/rs-2917183/v1 [Accessed May 26, 2025]
33. Xu M, Ling F, Li J, Chen Y, Li S, Cheng Y, et al. Oat beta-glucan reduces colitis by promoting autophagy flux in intestinal epithelial cells via EPHB6-TFEB axis. Front Pharmacol. 2023;14:1189229. PMID: 37441529 https://doi.org/10.3389/fphar.2023.1189229 eCollection 2023.
34. Spagnuolo R, Cosco C, Mancina RM, Ruggiero G, Garieri P, Cosco V, et al. Beta-glucan, inositol and digestive enzymes improve quality of life of patients with inflammatory bowel disease and irritable bowel syndrome. Eur Rev Med Pharmacol Sci. 2017;21(2 Suppl):102–107. PMID: 28724171
35. Singh RP, Bhardwaj A. β-glucans: a potential source for maintaining gut microbiota and the immune system. Front Nutr. 2023;10:1143682. PMID: 37215217 https://doi.org/10.3389/fnut.2023.1143682 eCollection 2023.
36. Cristofori F, Dargenio VN, Dargenio C, Miniello VL, Barone M, Francavilla R. Anti-inflammatory and immunomodulatory effects of probiotics in gut inflammation: a door to the body. Front Immunol. 2021;12:578386. PMID: 33717063 https://doi.org/10.3389/fimmu.2021.578386 eCollection 2021.
37. Liu Y, Wang J, Wu C. Modulation of gut microbiota and immune system by probiotics, pre-biotics, and post-biotics. Front Nutr. 2022;8:634897. PMID: 35047537 https://doi.org/10.3389/fnut.2021.634897 eCollection 2021.
38. Zou Y, Liao D, Huang H, Li T, Chi H. A systematic review and meta-analysis of beta-glucan consumption on glycemic control in hypercholesterolemic individuals. Int J Food Sci Nutr. 2015;66(4):355–362. PMID: 26001090 https://doi.org/10.3109/09637486.2015.1034250
Review
For citations:
Malyuk A.I., Girsh A.O., Stepanov S.S. Evaluation of the Use of the Innovative Nutritional Mixture Nutriset D in the Nutritional Support Program for Patients with Acute Respiratory Distress Syndrome. Russian Sklifosovsky Journal "Emergency Medical Care". 2025;14(2):371-378. (In Russ.) https://doi.org/10.23934/2223-9022-2025-14-2-371-378