Potential of Therapeutic Apheresis for Prolongation of Pregnancy in Early-Onset Preeclampsia
https://doi.org/10.23934/2223-9022-2025-14-2-277-293
Abstract
ABSTRACT Preeclampsia with onset between 20 and 34 weeks is conditioned by the development of endothelial dysfunction caused by increased secretion of antiangiogenic factors, activation of the immune system, and the synthesis of inflammatory mediators. This complication is responsible for the progression of multiple organ failure in the mother, and more than 60,000 maternal deaths annually worldwide. The only method of therapy at present is early delivery. Such tactics lead to high neonatal morbidity and mortality.
AIM OF STUDY To evaluate the possibilities of safely prolonging pregnancy using therapeutic apheresis methods in the development of early-onset preeclampsia.
MATERIAL AND METHODS A prospective randomized study was conducted involving 58 patients diagnosed with early-onset severe preeclampsia. The patients were divided into three groups. The patients of the first group underwent 2 sessions of cascade plasma filtration with a total processed plasma volume of 4810 (3250; 5680) ml. In the second group, hemoperfusion was performed with a perfusion volume of 18,460 (16.890; 21.350) ml in two sessions. At the stages of the study, the dynamics of clinical and laboratory parameters of the mother and newborn were assessed in comparison with the control group.
The use of cascade plasma filtration statistically significantly reduced the sFlt-1/PIGF ratio (p=0.017), pregnancy was prolonged by 32.5 (5.5; 42.5) days, the gestational age at delivery was 34.1 (29.6; 36.0) weeks. When using hemoperfusion, the level of neutrophil extracellular traps decreased statistically significantly. Pregnancy was prolonged by 26.5 (8; 52) days, the patients gave birth at a gestational age of 34.3 (33.5; 36.8) weeks. In the control group, the duration of pregnancy prolongation was 5.5 (2;7) days, p<0.017 compared with other groups. In this group, progression of laboratory signs of multiple organ failure and deterioration of fetal blood flow were noted. Newborns from the control group showed a statistically significantly greater need for surfactant: OR 7.3 95%CI [1.81; 29.6], p=0.005. Resuscitation bed-day and treatment in the department of premature infants for newborns from the control group were 12.5 (8.5; 16.8) and 15 (7; 22) days, respectively, p<0.017 compared with other groups.
CONCLUSION The use of therapeutic apheresis techniques in patients with early-onset preeclampsia may allow for safe prolongation of pregnancy in the interests of the fetus, which requires further study.
About the Authors
E. N. PlakhotinaRussian Federation
Zavodskaya Str. 17, Moscow Region, Vidnoye, 142700
T. N. Belousova
Russian Federation
Zavodskaya Str. 17, Moscow Region, Vidnoye, 142700
E. V. Bryantsev
Russian Federation
Zavodskaya Str. 17, Moscow Region, Vidnoye, 142700
N. V. Nizyaeva
Russian Federation
Tsyurupy Str. 3, Moscow, 117418
K. A. Artemieva
Russian Federation
Tsyurupy Str. 3, Moscow, 117418
A. A. Akhmetshina
Russian Federation
Tsyurupy Str. 3, Moscow, 117418
References
1. Enkhmaa D, Wall D, Mehta PK, Stuart JJ, Rich-Edwards JW, Merz CN, et al. Preeclampsia and Vascular Function: A Window to Future Cardiovascular Disease Risk. J Womens Health (Larchmt). 2016;25(3):284–291. PMID: 26779584 https://doi.org/10.1089/jwh.2015.5414
2. Backes CH, Markham K, Moorehead P, Cordero L, Nankervis CA, Giannone PJ. Maternal preeclampsia and neonatal outcomes. J Pregnancy. 2011;2011:214365. PMID: 21547086 https://doi.org/10.1155/2011/214365
3. Jim B, Karumanchi SA. Preeclampsia: Pathogenesis, Prevention, and Long-Term Complications. Semin Nephrol. 2017;37(4):386–397. PMID: 28711078 https://doi.org/10.1016/j.semnephrol.2017.05.011
4. Bogdanova IM, Artem’eva KA, Boltovskaya MN, Nizyaeva NV. The potential role of neutrophil extracellular traps in the pathogenesis of preeclampsia. Russian Journal of Human Reproduction. 2023;29(1):63–72. (In Russ.) https://doi.org/10.17116/repro20232901163
5. Bashmakova NV, Tsyv’ian PB, Chistiakova GN, Dankova IV, Trapeznikova YuM, Chukanova AN. The role of endothelial dysfunction in fetal growth restriction. Russian Bulletin of Obstetrician-Gynecologist. 2017;17(3):21–26. (In Russ.) https://doi.org/10.17116/rosakush201717321-26
6. Vasina LV, Petrishchev NN, Vlasov TD. Markers of endothelial dysfunction. Regional blood circulation and microcirculation. 2017;16(1):4–15. (In Russ.) https://doi.org/10.24884/1682-6655-2017-16-1-4-15
7. Boeldt DS, Bird IM. Vascular adaptation in pregnancy and endothelial dysfunction in preeclampsia. J Endocrinol. 2017;232(1):R27–R44. PMID: 27729465 https://doi.org/10.1530/JOE-16-0340
8. Gupta AK, Hasler P, Holzgreve W, Gebhardt S, Hahn S. Induction of neutrophil extracellular DNA lattices by placental microparticles and IL-8 and their presence in preeclampsia. Hum Immunol. 2005;66(11):1146–1154. PMID: 16571415 https://doi.org/10.1016/j.humimm.2005.11.003
9. Gupta A, Hasler P, Gebhardt S, Holzgreve W, Hahn S. Occurrence of neutrophil extracellular DNA traps (NETs) in preeclampsia: a link with elevated levels of cell-free DNA? Ann N Y Acad Sci. 2006;1075:118–122. PMID: 17108200 https://doi.org/10.1196/annals.1368.015
10. Bitsadze VO, Slukhanchuk EV, Khizroeva JaH, Tretyakova MV, Shkoda AS, Radetskaya LS, et al. Extracellular Neutrophil Traps (Nets) in the Pathogenesis of Thrombosis and Thromboinflammation. Annals of the Russian Academy of Medical Sciences. 2021;76(1):75–85. (In Russ.) https://doi.org/10.15690/vramn1395
11. Meng ML, Arendt KW. Obstetric Anesthesia and Heart Disease: Practical Clinical Considerations. Anesthesiology. 2021;135(1):164–183. PMID: 34046669 https://doi.org/10.1097/ALN.0000000000003833
12. Armaly Z, Jadaon JE, Jabbour A, Abassi ZA. Preeclampsia: Novel Mechanisms and Potential Therapeutic Approaches. Front Physiol. 2018;9:973. PMID: 30090069 https://doi.org/10.3389/fphys.2018.00973 eCollection 2018.
13. Young BC, Levine RJ, Karumanchi SA. Pathogenesis of preeclampsia. Annu Rev Pathol. 2010;5:173–192. PMID: 20078220 https://doi.org/10.1146/annurev-pathol121808102149
14. Yung HW, Atkinson D, Campion-Smith T, Olovsson M, Charnock-Jones DS, Burton GJ. Differential activation of placental unfolded protein response pathways implies heterogeneity in causation of earlyand late-onset pre-eclampsia. J Pathol. 2014;234(2):262–276. PMID: 24931423 https://doi.org/10.1002/path.4394
15. Sohlberg S, Mulic-Lutvica A, Lindgren P, Ortiz-Nieto F, Wikström AK, Wikström J. Placental perfusion in normal pregnancy and early and late preeclampsia: a magnetic resonance imaging study. Placenta. 2014;35(3):202–206. PMID: 24529946 https://doi.org/10.1016/j.placenta.2014.01.008
16. Vikse BE, Irgens LM, Karumanchi SA, Thadhani R, Reisæter AV, Skjærven R. Familial factors in the association between preeclampsia and later ESRD. Clin J Am Soc Nephrol. 2012;7(11):1819–1826. PMID: 22956264 https://doi.org/10.2215/CJN.01820212
17. Ghulmiyyah L, Sibai B. Maternal mortality from preeclampsia/eclampsia. Semin Perinatol. 2012;36(1):56–59. PMID: 22280867 https://doi.org/10.1053/j.semperi. 2011.09.011
18. Panova IA, Kudryashova AV, Rokotianskaia EA, Malyshkina AI. The characteristics of vascular elastic properties and the immune inflammatory response in pregnant women with hypertension. Russian Bulletin of Obstetrician-Gynecologist. 2019;19(1):18–26. (In Russ.) https://doi.org/10.17116/rosakush20191901118
19. Nikolaeva AE, Kaika IA, Yuabova EYu, Kutueva FR, Kutusheva GF, Kapustin SI, et al. Clinical significance of predictors for preeclampsia: prediction capabilities. Obstetrics and Gynecology. 2017; (11): 30–36. (In Russ.) https://doi.org/10.18565/aig.2017.11.30-36
20. Vsemirnaya organizatsiya zdravookhraneniya (VOZ). Tendentsii materinskoy smertnosti s 2000 po 2017 god: otsenki VOZ, YuNISEF, YuNFPA, Gruppy Vsemirnogo banka i Otdela narodonaseleniya Organizatsii Ob”edinennykh Natsiy: rezyume. Vsemirnaya organizatsiya zdravookhraneniya, 2019. (In Russ.) Available at: https://iris.who.int/bitstream/handle/10665/327596/WHO-RHR-19.23-rus.pdf?sequence=32&isAllowed=y [Accessed May 21, 2025].
21. Bombrys AE, Barton JR, Nowacki EA, Habli M, Pinder L, How H, et al. Expectant management of severe preeclampsia at less than 27 weeks’ gestation: maternal and perinatal outcomes according to gestational age by weeks at onset of expectant management. Am J Obstet Gynecol. 2008;199(3):247.e1-6. PMID: 18771971 https://doi.org/10.1016/j.ajog.2008.06.086
22. Manuck TA, Rice MM, Bailit JL, Grobman WA, Reddy UM, Wapner RJ, et al.; Eunice Kennedy Shriver National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network. Preterm neonatal morbidity and mortality by gestational age: a contemporary cohort. Am J Obstet Gynecol. 2016;215(1):103.e1–103.e14. PMID: 26772790 https://doi.org/10.1016/j.ajog.2016.01.004
23. Lisonkova S, Joseph KS. Incidence of preeclampsia: risk factors and outcomes associated with early-versus late-onset disease. Am J Obstet Gynecol. 2013;209(6):544.e1–544.e12. PMID: 23973398 https://doi.org/10.1016/j.ajog.2013.08.019
24. Bellamy L, Casas JP, Hingorani AD, Williams DJ. Pre-eclampsia and risk of cardiovascular disease and cancer in later life: systematic review and meta-analysis. BMJ. 2007;335(7627):974. PMID: 17975258 https://doi.org/10.1136/bmj.39335.385301.BE
25. Wang Y, Walli AK, Schulze A, Blessing F, Fraunberger P, Thaler C, et al. Heparin-mediated extracorporeal low density lipoprotein precipitation as a possible therapeutic approach in preeclampsia. Transfus Apher Sci. 2006;35(2):103–110. PMID: 17081803 https://doi.org/10.1016/j.transci.2006.05.010
26. Thadhani R, Kisner T, Hagmann H, Bossung V, Noack S, Schaarschmidt W, et al. Pilot study of extracorporeal removal of soluble fms-like tyrosine kinase 1 in preeclampsia. Circulation. 2011;124(8):940–950. PMID: 21810665 https://doi.org/10.1161/CIRCULATIONAHA.111.034793
27. Thadhani R, Hagmann H, Schaarschmidt W, Roth B, Cingoez T, Karumanchi SA, et al. Removal of soluble Fms-like tyrosine kinase-1 by dextran sulfate apheresis in preeclampsia. J Am Soc Nephrol. 2016;27(3):903–913. PMID: 26405111 https://doi.org/10.1681/ASN.2015020157
28. Winkler K, Contini C, König B, Krumrey B, Pütz G, Zschiedrich S, et al. Treatment of very preterm preeclampsia via heparin-mediated extracorporeal LDL-precipitation (H.E.L.P.) apheresis: The Freiburg preeclampsia H.E.L.P.-Apheresis study. Pregnancy Hypertens. 2018;12:136–143. PMID: 29858106 https://doi.org/10.1016/j.preghy.2018.04.007
29. Contini C, Jansen M, König B, Markfeld-Erol F, Kunze M, Zschiedrich S, et al. Lipoprotein turnover and possible remnant accumulation in preeclampsia: insights from the Freiburg Preeclampsia H.E.L.P.-apheresis study. Lipids Health Dis. 2018;17(1):49. PMID: 29540222 https://doi.org/10.1186/s12944-018-0698-4
30. Belotserkovtseva LD, Kovalenko LV, Pankratov VV, Zinin VN. Pathogenetic Approach to Early Preeclampsia and the Feasibility of Pregnancy Prolongation. General Reanimatology. 2022;18(2):37–44. https://doi.org/10.15360/1813-9779-2022-2-37-44
31. Iannaccone A, Reisch B, Kimmig R, Schmidt B, Mavarani L, Darkwah Oppong M, et al. Therapeutic Plasma Exchange in Early-Onset Preeclampsia: A 7-Year Monocentric Experience. J Clin Med. 2023;12(13):4289. PMID: 37445324 https://doi.org/10.3390/jcm12134289
32. Wind M, Gaasbeek AGA, Oosten LEM, Rabelink TJ, van Lith JMM, Sueters M, et al. Therapeutic plasma exchange in pregnancy: A literature review. Eur J Obstet Gynecol Reprod Biol. 2021;260:29–36. PMID: 33713886 https://doi.org/10.1016/j.ejogrb.2021.02.027
33. Altobelli C, Anastasio P, Cerrone A, Signoriello E, Lus G, Pluvio C, et al. Therapeutic Plasmapheresis: A Revision of Literature. Kidney Blood Press Res. 2023;48(1):66–78. PMID: 36481657 https://doi.org/10.1159/000528556
34. Rossiyskoe obshchestvo akusherov-ginekologov. Preeklampsiya. Eklampsiya. Oteki, proteinuriya i gipertenzivnye rasstroystva vo vremya beremennosti, v rodakh i poslerodovom periode. Klinicheskie rekomendatsii. Moscow, 2024. (In Russ.) Available at: http://disuria.ru/_ld/15/1564_kr24O10O16MZ.pdf [Accessed May 23, 2025].
35. Gur’ev AS, Mosal’skaya DV, Volkov AYu. Sposob opredeleniya otnositel’nogo kolichestva etoticheski transformirovannykh fagotsitov. Patent No 2712179 S1 RF IPC G01N 33/48(2006.01) G01N 33/49(2006.01). No 2019107008; decl. 13.03.2019. publ. 24.01.2020. Bull. 3. (In Russ.) Available at: https://yandex.ru/patents/doc/RU2712179C1_20200124?ysclid=mb0jx01sey301377872 [Accessed May 23, 2025].
36. Coggins N, Lai S. Hypertensive Disorders of Pregnancy. Emerg Med Clin North Am. 2023;41(2):269–280. PMID: 37024163 https://doi.org/10.1016/j.emc.2023.01.002
37. Staff AC, Redman CW, Williams D, Leeson P, Moe K, Thilaganathan B, et al.; Global Pregnancy Collaboration (CoLab). Pregnancy and Long-Term Maternal Cardiovascular Health: Progress Through Harmonization of Research Cohorts and Biobanks. Hypertension. 2016;67(2):251–260. PMID: 26667417 https://doi.org/10.1161/HYPERTENSIONAHA.115.06357
38. Sandgren JA, Santillan MK, Grobe JL. Breaking a Mother’s Heart: Circulating Antiangiogenic Factors and Hypertension During Pregnancy Correlate with Specific Cardiac Dysfunctions. Hypertension. 2016;67(6):1119–1120. PMID: 27113050 https://doi.org/10.1161/HYPERTENSIONAHA.116.07380
39. Gimeno-Molina B, Muller I, Kropf P, Sykes L. The Role of Neutrophils in Pregnancy, Term and Preterm Labour. Life (Basel). 2022;12(10):1512. PMID: 36294949 https://doi.org/10.3390/life12101512
40. Sattar N, Bendomir A, Berry C, Shepherd J, Greer IA, Packard CJ. Lipoprotein subfraction concentrations in preeclampsia: pathogenic parallels to atherosclerosis. Obstet Gynecol. 1997;89(3):403–408. PMID: 9052594 https://doi.org/10.1016/S0029-7844(96)00514-5
41. Hubel CA, Lyall F, Weissfeld L, Gandley RE, Roberts JM. Small low-density lipoproteins and vascular cell adhesion molecule-1 are increased in association with hyperlipidemia in preeclampsia. Metabo lism.1998;47(10):1281–1288. PMID: 9781635 https://doi.org/10.1016/s0026-0495(98)90337-7
42. Winkler K, Wetzka B, Hoffmann MM, Friedrich I, Kinner W, Baumstark MW, et al. Triglyceride-rich lipoproteins are associated with hypertension in preeclampsia. J Clin Endocrinol Metab. 2003;88(3):1162–1166. PMID: 12629100 https://doi.org/10.1210/jc.2002-021160
43. Enquobahrie DA, Williams MA, Butler CL, Frederick IO, Miller RS, Luthy DA. Maternal Plasma Lipid Concentrations in Early Pregnancy and Risk of Preeclampsia. Am J Hypertens. 2004;17(7):574–581. PMID: 15233976 https://doi.org/10.1016/j.amjhyper.2004.03.666
44. Sanchez SE, Williams MA, Muy-Rivera M, Qiu C, Vadachkoria S, Bazul V. A Case-Control Study of Oxidized Low Density Lipoproteins and Preeclampsia Risk. Gynecol Endocrinol. 2005;21(4):193–199. PMID: 16316839 https://doi.org/10.1080/09513590500154019
45. Dallinga-Thie GM, Kroon J, Borén J, Chapman MJ.Triglyceride-rich lipoproteins and remnants: targets for therapy? Curr Cardiol Rep. 2016;18(7):67. PMID: 27216847 https://doi.org/10.1007/s11886-016-0745-6
46. Shafiq S, Muzaffar S, Qurrat-Ul-Ain, Farooq N, Shams N, Meraj L. Association of Raised Serum Triglycerides with Incidence of Pre-Eclampsia. JRMC. 2023;26;27(3). https://doi.org/10.37939/jrmc.v27i3.2315 Available from: https://www.journalrmc.com/index.php/JRMC/article/view/2315 [cited 23 May 2025]
47. Gallos ID, Sivakumar K, Kilby MD, Coomarasamy A, Thangaratinam S, Vatish M. Preeclampsia is associated with, and preceded by, hypertriglyceridaemia: a meta-analysis. BJOG. 2013;120(11):1321–1332. PMID: 23859707 https://doi.org/10.1111/1471-0528.12375
Review
For citations:
Plakhotina E.N., Belousova T.N., Bryantsev E.V., Nizyaeva N.V., Artemieva K.A., Akhmetshina A.A. Potential of Therapeutic Apheresis for Prolongation of Pregnancy in Early-Onset Preeclampsia. Russian Sklifosovsky Journal "Emergency Medical Care". 2025;14(2):277-293. (In Russ.) https://doi.org/10.23934/2223-9022-2025-14-2-277-293