The Role of Thiamine in the Development of Wernicke Encephalopathy
https://doi.org/10.23934/2223-9022-2025-14-1-166-177
Abstract
RELEVANCE. Wernicke encephalopathy (WE) is an acute life-threatening neurological disease caused by thiamine deficiency. Vitamin B1 is a coenzyme that is involved in the process of maintaining the integrity of cell membranes, and, consequently, the normal functioning of the nervous system, muscles and heart. The prevalence of WE in the population is 0.4–2.8%. In the absence of timely treatment, WE leads to the development of severe disability, and in 20% of cases — to death.
AIM OF STUDY. Systematization of data on the role of thiamine in the development of Wernicke encephalopathy.
MATERIAL AND METHODS. To achieve this goal, the results of scientific research on WE were analyzed. The literature search was carried out in Scopus, eLibrary, PubMed electronic search engines using the following keywords: Wernicke encephalopathy, thiamine, alcohol abuse, thiamine deficiency. Scientific articles published between 1881 and 2024 were selected for analysis.
RESULTS. The most common cause of WE is chronic alcoholism, which accounts for 50% of all cases. However, there are many other diseases and conditions that can lead to the development of WE. Vitamin B1 deficiency plays an important role in the development of WE.
CONCLUSIONS. Vitamin B1 deficiency can develop as a result of a malfunction at various stages of the metabolic chain, during various pathological processes in the human body. Wernicke encephalopathy occurs not only in people who abuse alcohol, but also in pregnant women, cancer patients, patients with diseases of the gastrointestinal tract, liver and thyroid gland, after bariatric and other abdominal surgeries, as well as in patients on long-term parenteral nutrition. Thiamine deficiency, and, as a consequence, Wernicke encephalopathy, can lead to irreversible brain damage, severe disability and death.
About the Authors
E. A. KovalevaRussian Federation
Ella A. Kovaleva - Candidate of Medical Sciences, Senior Researcher, Scientific Department of Emergency Neurology and Rehabilitation, N.V. Sklifosovsky Research Institute for Emergency Medicine.
Bolshaya Sukharevskaya Sq. 3, Moscow, 129090
G. R. Ramazanov
Russian Federation
Ganipa R. Ramazanov - Candidate of Medical Sciences, Deputy Director – Head of the Regional Vascular Center; Head, Scientific Department of Emergency Neurology and Rehabilitation, N.V. Sklifosovsky Research Institute for Emergency Medicine.
Bolshaya Sukharevskaya Sq. 3, Moscow, 129090
A. A. Ryk
Russian Federation
Alla A. Ryk - Candidate of Medical Sciences, Senior Researcher, Department of Emergency Surgery, Endoscopy and Intensive Care, N.V. Sklifosovsky Research Institute for Emergency Medicine.
Bolshaya Sukharevskaya Sq. 3, Moscow, 129090
References
1. Ramazanov GR, Kovaleva EA, Stepanov VN, Korigova HV, Shevchenko EV, Zabrodskaya YV, et al. Clinical Cases of Wernicke Encephalopathy. Russian Sklifosovsky Journal Emergency Medical Care. 2020;9(2):292–297. https://doi.org/10.23934/2223-9022-2020-9-2-292-297
2. Fedeli P, Justin Davies R, Cirocchi R, Popivanov G, Bruzzone P, Giustozzi M. Total parenteral nutrition-induced Wernicke’s encephalopathy after oncologic gastrointestinal surgery. Open Med (Wars). 2020;15(1):709–713. PMID: 33336027 https://doi.org/10.1515/med-2020-0210 eCollection 2020.
3. Wernicke C. Lehrbuch der Gehirnkrankheiten fur Aerzte und Studirende. Bd. 2. Kassel, Germany: Theodor Fischer; 1881. p. 229–242.
4. Ott M, Werneke U. Wernicke’s encephalopathy – from basic science to clinical practice. Part 1: Understanding the role of thiamine. Ther Adv Psychopharmacol. 2020;10:2045125320978106. PMID: 33447357 https://doi.org/10.1177/2045125320978106 eCollection 2020.
5. Campbell ACP, Russel WR. Wernicke’s Encephalopathy: the clinical features and their probable relationship to vitamin B deficiency. QJM. 1941;10:41–64.
6. Habas E, Farfar K, Errayes N, Rayani A, Elzouki AN. Wernicke Encephalopathy: An Updated Narrative Review. Saudi J Med Med Sci. 2023;11(3):193–200. PMID: 37533659 https://doi.org/10.4103/sjmms.sjmms_416_22
7. Vasan S, Kumar A. Wernicke Encephalopathy. 2023 Aug 14. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024. PMID: 29261914
8. Qureshi UA, Wani NA, Ahmad K, Irshad M, Ali I. Infantile Wernicke’s encephalopathy. Arch Dis Child. 2015;100(7):648. PMID: 25564535 https://doi.org/10.1136/archdischild-2014-307949
9. Ota Y, Capizzano AA, Moritani T, Naganawa S, Kurokawa R, Srinivasan A. Comprehensive review of Wernicke encephalopathy: pathophysiology, clinical symptoms and imaging findings. Jpn J Radiol. 2020;38(9):809–820. PMID: 32390125 https://doi.org/10.1007/s11604-020-00989-3
10. Oudman E, Wijnia JW, Oey M, van Dam M, Painter RC, Postma A. Wernicke’s encephalopathy in hyperemesis gravidarum: a systematic review. Eur J Obstet Gynecol Reprod Biol. 2019;236:84–93. PMID: 30889425 https://doi.org/10.1016/j.ejogrb.2019.03.006
11. Bonucchi J, Hassan I, Policeni B, Kaboli P. Thyrotoxicosis associated Wernicke’s encephalopathy. J Gen Intern Med. 2008;23(1):106–109. PMID: 18026802 https://doi.org/10.1007/s11606-007-0438-3
12. World Health Organization, United Nations High Commissioner for Refugees. Thiamine deficiency and its prevention and control in major emergencies. WHO reference number: WHO/NHD/99.13. Available at: https://www.who.int/publications/i/item/WHO-NHD-99.13 [Accessed Apr 24, 2024].
13. Department of Health. Manual of nutrition. 12th ed. Norwich, UK: The Stationary Office (TSO); 2012.
14. Bettendorff L, Lakaye B, Kohn G, Wins P. Thiamine triphosphate: a ubiquitous molecule in search of a physiological role. Metab Brain Dis. 2014;29(4):1069–1082. PMID: 24590690 https://doi.org/10.1007/s11011-014-9509-4
15. Burch HB, Bessey OA, Love RH, Lowry OH. The determination of thiamine and thiamine phosphates in small quantities of blood and blood cells. J Biol Chem. 1952;198(1):477–490. PMID: 12999762
16. Sechi G, Serra A. Wernicke’s encephalopathy: new clinical settings and recent advances in diagnosis and management. Lancet Neurol. 2007;6(5):442–455. PMID: 17434099 https://doi.org/10.1016/S1474-4422(07)70104-7
17. Department of Bioinformatics & Biochemistry. Technische Universität Braunschweig, DE. Brenda (BRaunschweig ENzyme DAtabase). The comprehensive enzyme information system. Available at: https://www.brenda-enzymes.org/ [Accessed Apr 24, 2024].
18. OMIM. Online Mendelian Inheritance in Man. An online catalog of human genes and genetic disorders. Available at: https://www.omim.org/ [Accessed Apr 24, 2024].
19. US National Library of Medicine (NIH). Medline Plus. Genetics. Find consumer-friendly information about the effects of genetic variation on human health. Available at: https://ghr.nlm.nih.gov/ [Accessed Apr 24, 2024].
20. Marcé-Grau A, Martí-Sánchez L, Baide-Mairena H, Ortigoza-Escobar JD, Pérez-Dueñas B. Genetic defects of thiamine transport and metabolism: a review of clinical phenotypes, genetics, and functional studies. J Inherit Metab Dis. 2019;42(4):581–597. PMID: 31095747 https://doi.org/10.1002/jimd.12125
21. Frank LL. Thiamin in clinical practice. JPEN J Parenter Enteral Nutr. 2015;39(5):503–520. PMID: 25564426 https://doi.org/10.1177/0148607114565245
22. Garrett RH, Grisham CM. Biochemistry. 5th ed. Belmont, CA: Brooks/Cole Cengage Learning; 2012.
23. Hirsch JA, Parrott J. New considerations on the neuromodulatory role of thiamine. Pharmacology. 2012;89(1–2):111–116. PMID: 22398704 https://doi.org/10.1159/000336339
24. Jen JC, Wan J, Palos TP, Howard BD, Baloh RW. Mutation in the glutamate transporter EAAT1 causes episodic ataxia, hemiplegia, and seizures. Neurology. 2005;65(4):529–534. PMID: 16116111 https://doi.org/10.1212/01.wnl.0000172638.58172.5a
25. Koepsell H. Organic cation transporters in health and disease. Pharmacol Rev. 2020;72(1):253–319. PMID: 31852803 https://doi.org/10.1124/pr.118.015578
26. Rindi G, Laforenza U. Thiamine intestinal transport and related issues: recent aspects. Proc Soc Exp Biol Med. 2000;224(4):246–255. PMID: 10964259 https://doi.org/10.1046/j.1525-1373.2000.22428.x
27. Said HM, Nexo E. Gastrointestinal handling of water-soluble vitamins. Compr Physiol. 2018;8(4):1291–1311. PMID: 30215865 https://doi.org/10.1002/cphy.c170054
28. Hoyumpa AM Jr, Strickland R, Sheehan JJ, Yarborough G, Nichols S. Dual system of intestinal thiamine transport in humans. J Lab Clin Med. 1982;99(5):701–708. PMID: 6279749
29. Spector R, Johanson C. Micronutrient and urate transport in choroid plexus and kidney: implications for drug therapy. Pharm Res. 2006;23(11):2515–2524. PMID: 17048121 https://doi.org/10.1007/s11095-006-9091-5
30. Manzetti S, Zhang J, van der Spoel D. Thiamin function, metabolism, uptake, and transport. Biochemistry. 2014;53(5):821–835. PMID: 24460461 https://doi.org/10.1021/bi401618y
31. Nabokina SM, Subramanian VS, Valle JE, Said HM. Adaptive regulation of human intestinal thiamine uptake by extracellular substrate level: a role for THTR-2 transcriptional regulation. Am J Physiol Gastrointest Liver Physiol. 2013;305(8):G593–G599. PMID: 23989004 https://doi.org/10.1152/ajpgi.00237.2013
32. Abdul-Muneer PM, Alikunju S, Schuetz H, Szlachetka AM, Ma X, Haorah J. Impairment of thiamine transport at the GUT-BBB-AXIS contributes to Wernicke’s encephalopathy. Mol Neurobiol. 2018;55(7):5937–5950. PMID: 29128903 https://doi.org/10.1007/s12035-017-0811-0
33. Thom JY, Davis RE, Icke GC. Protein binding of thiamin in human plasma. Int J Vitam Nutr Res. 1986;56(2):189. PMID: 3733341
34. Spector R, Johanson CE. Vitamin transport and homeostasis in mammalian brain: focus on vitamins B and E. J Neurochem. 2007;103(2):425–438. PMID: 17645457 https://doi.org/10.1111/j.1471-4159.2007.04773.x
35. Spector R. Micronutrient homeostasis in mammalian brain and cerebrospinal fluid. J Neurochem. 1989;53(6):1667–1674. PMID: 2681535 https://doi.org/10.1111/j.1471-4159.1989.tb09229.x
36. McCandless DW, Schenker S, Cook M. Encephalopathy of thiamine deficieny: studies of intracerebral mechanisms. J Clin Invest. 1968;47(10):2268–2280. PMID: 5676522 https://doi.org/10.1172/JCI105912
37. Victor M, Adams RD, Collins GH. The Wernicke-Korsakoff syndrome. A clinical and pathological study of 245 patients, 82 with post-mortem examinations. Contemp Neurol Ser. 1971;7:1–206. PMID: 5162155
38. Gangolf M, Wins P, Thiry M, El Moualij B, Bettendorff L. Thiamine triphosphate synthesis in rat brain occurs in mitochondria and is coupled to the respiratory chain. J Biol Chem. 2010;285(1):583–594. PMID: 19906644 https://doi.org/10.1074/jbc.M109.054379
39. Ziporin ZZ, Nunes WT, Powell RC, Waring PP, Sauberlich HE. Excretion of thiamine and its metabolites in the urine of young adult males receiving restricted intakes of the vitamin. J Nutr. 1965;85:287–296. PMID: 14261840 https://doi.org/10.1093/jn/85.3.287
40. Ariaey-Nejad MR, Balaghi M, Baker EM, Sauberlich HE. Thiamin metabolism in man. Am J Clin Nutr. 1970;23(6):764–778. PMID: 5431041 https://doi.org/10.1093/ajcn/23.6.764
41. Kreinbring CA, Remillard SP, Hubbard P, Brodkin HR, Leeper FJ, Hawksley D, et al. Structure of a eukaryotic thiaminase. I Proc Natl Acad Sci U S A. 2014;111(1):137–142. PMID: 24351929 https://doi.org/10.1073/pnas.1315882110
42. Cornell College of Agriculture and Life Sciences (Cornell CALS). Thiaminases. Available at: https://poisonousplants.ansci.cornell.edu/toxicagents/thiaminase.html#:~:text=Thiaminases%20are%20enzmyes%20found%20in,metabolism%2C%20and%20render%20it%20inactive [Accessed Apr 24, 2024].
43. Kritikos G, Parr JM, Verbrugghe A. The role of thiamine and effects of deficiency in dogs and cats. Vet Sci. 2017;4(4):59. https://doi.org/10.3390/vetsci4040059
44. Balaghi M, Pearson WN. Metabolism of physiological doses of thiazole-2-14 C-labeled thiamine by the rat. J Nutr. 1966;89(3):265–270. PMID: 5913934 https://doi.org/10.1093/jn/89.3.265
45. Weber W, Nitz M, Looby M. Nonlinear kinetics of the thiamine cation in humans: saturation of nonrenal clearance and tubular reabsorption. J Pharmacokinet Biopharm. 1990;18(6):501–523. PMID: 2280348 https://doi.org/10.1007/BF01073936
46. Kato K, Moriyama C, Ito N, Zhang X, Hachiuma K, Hagima N, et al. Involvement of organic cation transporters in the clearance and milk secretion of thiamine in mice. Pharm Res. 2015;32(7):2192–2204. PMID: 25701312 https://doi.org/10.1007/s11095-014-1608-8
47. Boulware MJ, Subramanian VS, Said HM, Marchant JS. Polarized expression of members of the solute carrier SLC19A gene family of water-soluble multivitamin transporters: implications for physiological function. Biochem J. 2003;376(Pt 1):43–48. PMID: 14602044 https://doi.org/10.1042/BJ20031220
48. Lechner C, Ishiguro N, Fukuhara A, Shimizu H, Ohtsu N, Takatani M, et al. Impact of experimental conditions on the evaluation of interactions between multidrug and toxin extrusion proteins and candidate drugs. Drug Metab Dispos. 2016;44(8):1381–1389. PMID: 27271370 https://doi.org/10.1124/dmd.115.068163
49. Schuchardt JP, Hahn A. Intestinal absorption and factors influencing bioavailability of magnesium-an update. Curr Nutr Food Sci. 2017;13(4):260–278. PMID: 29123461 https://doi.org/10.2174/1573401313666170427162740
50. Grochowski C, Blicharska E, Baj J, Mierzwińska A, Brzozowska K, Forma A, et al. Serum iron, magnesium, copper, and manganese levels in alcoholism: a systematic review. Molecules. 2019;24(7):1361. PMID: 30959950 https://doi.org/10.3390/molecules24071361
51. Ryzen E, Nelson TA, Rude RK. Low blood mononuclear cell magnesium content and hypocalcemia in normomagnesemic patients. West J Med. 1987;147(5):549–553. PMID: 3424818
52. Musso CG. Magnesium metabolism in health and disease. Int Urol Nephrol. 2009;41(2):357–362. PMID: 19274487 https://doi.org/10.1007/s11255-009-9548-7
53. Yu ASL. Hypomagnesemia: evaluation and treatment. Available at: https://www.uptodate.com/contents/hypomagnesemia-evaluation-and-treatment [Accessed Apr 24, 2024].
54. Hoyumpa AM. Mechanisms of thiamin deficiency in chronic alcoholism. Am J Clin Nutr. 1980;33(12):2750-2761. PMID: 3544907 https://doi.org/10.1111/j.1530-0277.1986.tb05147.x
55. Isenberg-Grzeda E, Kutner HE, Nicolson SE. Wernicke-Korsakoff-Syndrome: Under-Recognized and Under-Treated. Psychosomatics. 2012;53(6):507–516. PMID: 23157990 https://doi.org/10.1016/j.psym.2012.04.008
56. Aasheim ET. Wernicke encephalopathy after bariatric surgery: a systematic review. Ann Surg. 2008;248(5):714-720. PMID: 18948797 https://doi.org/10.1097/SLA.0b013e3181884308
57. Cui HW, Zhang BA, Peng T, Liu Y, Liu YR. Wernicke’s encephalopathy in a patient with acute pancreatitis: unusual cortical involvement and marvelous prognosis. Neurol Sci. 2012;33(3):615–618. PMID: 21918877 https://doi.org/10.1007/s10072-011-0771-5
58. Arana-Guajardo AC, Cámara-Lemarroy CR, Rendón-Ramírez EJ, Jáquez-Quintana JO, Góngora-Rivera JF, Galarza-Delgado DA. Wernicke encephalopathy presenting in a patient with severe acute pancreatitis. JOP. 2012;13(1):104–107. PMID: 22233960
59. Kuo SH, Debnam JM, Fuller GN, de Groot J. Wernicke’s encephalopathy: an underrecognized and reversible cause of confusional state in cancer patients. Oncology. 2009;76(1):10–18. PMID: 19018150 https://doi.org/10.1159/000174951
60. Boniol S, Boyd M, Koreth R, Burton GV. Wernicke encephalopathy complicating lymphoma therapy: case report and literature review. South Med J. 2007;100(7):717–719. PMID: 17639753 https://doi.org/10.1097/SMJ.0b013e318061920a
61. Buesa JM, García-Teijido P, Losa R, Fra J. Treatment of ifosfamide encephalopathy with intravenous thiamin. Clin Cancer Res. 2003;9(12):4636–4637. PMID: 14555540
62. Ueda K, Takada D, Mii A, Tsuzuku Y, Saito SK, Kaneko T, et al. Severe thiamine deficiency resulted in Wernicke’s encephalopathy in a chronic dialysis patient. Clin Exp Nephrol. 2006;10(4):290–293. PMID: 17186335 https://doi.org/10.1007/s10157-006-0440-9
63. Hahn J, Berquist W, Alcorn DM, Chamberlain L, Bass D. Wernicke’s encephalopathy and beriberi during total parenteral nutrition attributable to multivitamin infusion shortage. Pediatrics. 1998;101(1):E10. PMID: 9417174 https://doi.org/10.1542/peds.101.1.e10
64. Victor M, Adams R, Collins G. (eds.) The Wernicke-Korsakoff syndrome and related neurologic disorders due to alcoholism and malnutrition. FA Davis, Philadelphia;1989. p. 142–145.
65. Hazell AS, Butterworth RF. Update of cell damage mechanisms in thiamine deficiency: focus on oxidative stress, excitotoxicity, and inflammation. Alcohol Alcohol. 2009;44(2):141–147. PMID: 19151161 https://doi.org/10.1093/alcalc/agn120
66. Harper CG, Giles M, Finlay-Jones R. Clinical signs in the Wernicke-Korsakoff complex: a retrospective analysis of 131 cases diagnosed at necropsy. J Neurol Neurosurg Psychiatry. 1986;49(4):341–345 PMID: 3701343 https://doi.org/10.1136/jnnp.49.4.341
67. Chandrakumar A, Bhardwaj A, ‘t Jong GW. Review of thiamine deficiency disorders: Wernicke encephalopathy and Korsakoff psychosis. J Basic Clin Physiol Pharmacol. 2018;30(2):153–162. PMID: 30281514 https://doi.org/10.1515/jbcpp-2018-0075
68. Akhouri S, Kuhn J, Newton EJ. Wernicke-Korsakoff Syndrome. 2023 Jun 26. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024. PMID: 28613480
69. Wijnia JW. A Clinician’s View of Wernicke-Korsakoff Syndrome. J Clin Med. 2022;11(22):6755. PMID: 36431232 https://doi.org/10.3390/jcm11226755
70. Galvin R, Bråthen G, Ivashynka A, Hillbom M, Tanasescu R, Leone MA; EFNS. EFNS guidelines for diagnosis, therapy and prevention of Wernicke encephalopathy. Eur J Neurol. 2010;17(12):1408–1418. PMID: 20642790 https://doi.org/10.1111/j.1468-1331.2010.03153.x
Review
For citations:
Kovaleva E.A., Ramazanov G.R., Ryk A.A. The Role of Thiamine in the Development of Wernicke Encephalopathy. Russian Sklifosovsky Journal "Emergency Medical Care". 2025;14(1):166-177. (In Russ.) https://doi.org/10.23934/2223-9022-2025-14-1-166-177