Preview

Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»

Расширенный поиск

Эндотелиальная дисфункция при травме: патогенез, клиническое значение, диагностика и лечение

https://doi.org/10.23934/2223-9022-2024-13-4-617-630

Аннотация

Тяжелая травма представляет собой важнейшую медицинскую и социальную проблему. Тяжелые повреждения являются главной причиной гибели людей в возрасте до 44 лет. Многие выжившие после травмы становятся инвалидами. Если не учитывать немедленную смерть пострадавших на догоспитальном этапе, внутрибольничная летальность, как правило, обусловлена геморрагическим шоком, коагулопатией, системным воспалением, как инфекционной, так и неинфекционной природы, и полиорганной недостаточностью.

В последнее десятилетие признается значительная роль эндотелиальной дисфункции в развитии данных патологических процессов. Под эндотелиальной дисфункцией понимают чрезмерную активацию эндотелия, сопровождающуюся мультисистемными проявлениями. В данном обзоре литературы представлены современные данные о физиологии нормального эндотелия, патогенезе развития эндотелиальной дисфункции при травме, о ее роли в развитии системного воспаления, повышения сосудистой проницаемости и коагулопатии, о методах ее диагностики и коррекции.

Об авторах

В. В. Матюхин
ФГБОУ ВО «Волгоградский государственный медицинский университет» МЗ РФ; ГУЗ «Городская клиническая больница скорой медицинской помощи № 25»
Россия

Матюхин Виктор Викторович - кандидат медицинских наук, доцент, доцент кафедры госпитальной хирургии.

400131, Волгоград, пл. Павших Борцов, д. 1; 400138, Волгоград, ул. им. Землячки, д. 74



С. С. Маскин
ФГБОУ ВО «Волгоградский государственный медицинский университет» МЗ РФ
Россия

Маскин Сергей Сергеевич - доктор медицинских наук, профессор, заведующий кафедрой госпитальной хирургии ФГБОУ ВО ВолгГМУ МЗ РФ.

400131, Волгоград, пл. Павших Борцов, д. 1



В. В. Александров
ФГБОУ ВО «Волгоградский государственный медицинский университет» МЗ РФ
Россия

Александров Василий Владимирович - кандидат медицинских наук, доцент кафедры госпитальной хирургии.

400131, Волгоград, пл. Павших Борцов, д. 1



Г. П. Дудченко
ФГБОУ ВО «Волгоградский государственный медицинский университет» МЗ РФ
Россия

Дудченко Галина Петровна - доктор биологических наук, доцент, профессор кафедры теоретической биохимии с курсом клинической биохимии.

400131, Волгоград, пл. Павших Борцов, д. 1



О. В. Островский
ФГБОУ ВО «Волгоградский государственный медицинский университет» МЗ РФ
Россия

Островский Олег Владимирович - доктор медицинских наук, профессор, заведующий кафедрой теоретической биохимии с курсом клинической биохимии.

400131, Волгоград, пл. Павших Борцов, д. 1



М. Н. Алимов
ГУЗ «Городская клиническая больница скорой медицинской помощи № 25»
Россия

Алимов Максим Николаевич - врач-хирург хирургического отделения.

400138, Волгоград, ул. им. Землячки, д. 74



О. В. Верле
ФГБОУ ВО «Волгоградский государственный медицинский университет» МЗ РФ
Россия

Верле Ольга Владимировна - ассистент кафедры теоретической биохимии с курсом клинической биохимии.

400131, Волгоград, пл. Павших Борцов, д. 1



Список литературы

1. van Breugel JMM, Niemeyer MJS, Houwert RM, Groenwold RHH, Leenen LPH, van Wessem KJP. Global changes in mortality rates in polytrauma patients admitted to the ICU-a systematic review. World J Emerg Surg. 2020;15(1):55. PMID: 32998744 https://doi.org/10.1186/s13017-020-00330-3

2. Sasser SM, Hunt RC, Faul M, Sugerman D, Pearson WS, Dulski T, et al. Guidelines for field triage of injured patients: recommendations of the National Expert Panel on Field Triage, 2011. MMWR Recomm Rep. 2012;61(RR–1):1–20. PMID: 22237112

3. Cothren CC, Moore EE, Hedegaard HB, Meng K. Epidemiology of urban trauma deaths: a comprehensive reassessment 10 years later. World J Surg. 2007;31(7):1507–1511. PMID: 17505854 https://doi.org/10.1007/s00268-007-9087-2

4. Global status report on road safety 2018. Geneva: World Health Organization; 2018.

5. Weihs V, Frenzel S, Dedeyan M, Hruska F, Staats K, Hajdu S, et al. 25Year experience with adult polytraumatized patients in a European level 1 trauma center: polytrauma between 1995 and 2019. What has changed? A retrospective cohort study. Arch Orthop Trauma Surg. 2023;143(5):2409–2415. PMID: 3541207 https://doi.org/10.1007/s00402-022-04433-1

6. WHO Mortality Database. World Health Organization. Available at: https://platform.who.int/mortality/themes/theme-details/MDB/injuries [Accessed Nov 26, 2024]

7. Kauvar DS, Lefering R, Wade CE. Impact of hemorrhage on trauma outcome: an overview of epidemiology, clinical presentations, and therapeutic considerations. J Trauma. 2006;60(6 Suppl):S3–11. PMID: 16763478 https://doi.org/10.1097/01.ta.0000199961.02677.19

8. Sobrino J, Shafi S. Timing and causes of death after injuries. Proc (Bayl Univ Med Cent). 2013;26(2):120–123. PMID: 23543966 https://doi.org/10.1080/08998280.2013.11928934

9. Brohi K, Gruen RL, Holcomb JB. Why are bleeding trauma patients still dying? Intensive Care Med. 2019;45(5):709–711. PMID: 30741331 https://doi.org/10.1007/s00134-019-05560-x

10. Schmitt J, Gurney J, Aries P, Danguy Des Deserts M. Advances in trauma care to save lives from traumatic injury: a narrative review. J Trauma Acute Care Surg. 2023;95(2):285–292. PMID: 36941236 https://doi.org/10.1097/TA.0000000000003960

11. Dobson GP, Morris JL, Letson HL. Why are bleeding trauma patients still dying? Towards a systems hypothesis of trauma. Front Physiol. 2022;13:990903. PMID: 36148305 https://doi.org/10.3389/fphys.2022.990903

12. Richards JE, Samet RE, Grissom TE. Scratching the Surface: Endothelial Damage in Traumatic Hemorrhagic Shock. Adv Anesth. 2021;39:35–51. PMID: 34715980 https://doi.org/10.1016/j.aan.2021.07.003

13. Aird WC. Endothelium as an organ system. Crit Care Med. 2004;32(5 Suppl):S271–279. PMID: 15118530 https://doi.org/10.1097/01.ccm.0000129669.21649.40

14. Bazzoni G, Dejana E. Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev. 2004;84(3):869–901. PMID: 15269339 https://doi.org/10.1152/physrev.00035.2003

15. Mescher AL. Junqueira’s Basic Histology: Text and Atlas. 14th ed. New York: McGraw-Hill Education; 2016.

16. Houston MC. Vascular Biology in Clinical Practice. London: Hanley&Belfus; 2002.

17. Di Battista AP, Rizoli SB, Lejnieks B, Min A, Shiu MY, Peng HT, et al. Sympathoadrenal Activation is Associated with Acute Traumatic Coagulopathy and Endotheliopathy in Isolated Brain Injury. Shock. 2016;46(3 Suppl 1):96–103. PMID: 27206278 https://doi.org/10.1097/sHK.0000000000000642

18. Johansson PI, Stensballe J, Ostrowski SR. Shock induced endotheliopathy (SHINE) in acute critical illness – a unifying pathophysiologic mechanism. Crit Care. 2017;21(1):25. PMID: 28179016 https://doi.org/10.1186/s13054-017-1605-5

19. Johansson PI, Henriksen HH, Stensballe J, Gybel-Brask M, Cardenas JC, Baer LA, et al. Traumatic Endotheliopathy: A Prospective Observational Study of 424 Severely Injured Patients. Ann Surg. 2017;265(3):597–603. PMID: 27144442 https://doi.org/10.1097/SLA.0000000000001751

20. Henriksen HH, Marín de Mas I, Herand H, Krocker J, Wade CE, Johansson PI. Metabolic systems analysis identifies a novel mechanism contributing to shock in patients with endotheliopathy of trauma (EoT) involving thromboxane A2 and LTC4. Matrix Biol Plus. 2022;15:100115. PMID: 35813244 https://doi.org/10.1016/j.mbplus.2022.100115

21. Krocker JD, Lee KH, Henriksen HH, Wang YW, Schoof EM, Karvelsson ST, et al. Exploratory Investigation of the Plasma Proteome Associated with the Endotheliopathy of Trauma. Int J Mol Sci. 2022;23(11):6213. PMID: 35682894 https://doi.org/10.3390/ijms23116213

22. Hofmann N, Zipperle J, Jafarmadar M, Ashmwe M, Keibl C, Penzenstadler C, et al. Experimental Models of Endotheliopathy: Impact of Shock Severity. Shock. 2018;49(5):564–571. PMID: 28697004 https://doi.org/10.1097/SHK.0000000000000944

23. Bunch CM, Chang E, Moore EE, Moore HB, Kwaan HC, Miller JB, et al. SHock-INduced Endotheliopathy (SHINE): A mechanistic justification for viscoelastography-guided resuscitation of traumatic and nontraumatic shock. Front Physiol. 2023;14:1094845 PMID: 36923287 https://doi.org/10.3389/fphys.2023.1094845

24. van Niel G, D’Angelo G, Raposo G. Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol. 2018;19(4):213–228. PMID: 29339798 https://doi.org/10.1038/nrm.2017.125

25. Zeineddin A, Wu F, Dong JF, Huang H, Zou L, Chao W, et al. TraumaDerived Extracellular Vesicles are Sufficient to Induce Endothelial Dysfunction and Coagulopathy. Shock. 2022;58(1):38–44. PMID: 35984759 https://doi.org/10.1097/SHK.0000000000001950

26. Dujardin RWG, Kisters JEC, Wirtz MR, Hajji N, Tuip-de Boer AM, Stensballe J, et al. Shock-Driven Endotheliopathy in Trauma Patients Is Associated with Leucocyte Derived Extracellular Vesicles. Int J Mol Sci. 2022;23(24):15990. PMID: 36555630 https://doi.org/10.3390/ijms232415990

27. Valade G, Libert N, Martinaud C, Vicaut E, Banzet S, Peltzer J. Therapeutic Potential of Mesenchymal Stromal Cell-Derived Extracellular Vesicles in the Prevention of Organ Injuries Induced by Traumatic Hemorrhagic Shock. Front Immunol. 2021;12:749659. PMID: 34659252 https://doi.org/10.3389/fimmu.2021.749659

28. Miyazawa B, Trivedi A, Togarrati PP, Potter D, Baimukanova G, Vivona L, et al. Regulation of endothelial cell permeability by platelet-derived extracellular vesicles. J Trauma Acute Care Surg. 2019;86(6):931–942. PMID: 31124890 https://doi.org/10.1097/TA.0000000000002230

29. Wade CE, Matijevic N, Wang YW, Rodriguez EG, Lopez E, Ostrowski SR, et al. Absences of Endothelial Microvesicle Changes in the Presence of the Endotheliopathy of Trauma. Shock. 2019;51(2):180–184. PMID: 29621120 https://doi.org/10.1097/SHK.0000000000001149

30. Hellenthal KEM, Brabenec L, Wagner N-M. Regulation and Dysregulation of Endothelial Permeability during Systemic Inflammation. Cells. 2022;11(12):1935. PMID: 35741064 https://doi.org/10.3390/cells11121935

31. DeBot M, Mitra S, Lutz P, Schaid TR Jr, Stafford P, Hadley JB, et al. Shock Induces Endothelial Permeability After Trauma Through Increased Activation of RhoA GTPase. Shock. 2022;58(6):542–548. PMID: 36548645 https://doi.org/10.1097/SHK.0000000000002008

32. Richter RP, Russell RT, Hu PJ, Uhlich RM, Swain TA, Kerby JD, et al. Plasma Angiopoietin-2/-1 Ratio is Elevated and Angiopoietin-2 Levels Correlate with Plasma Syndecan-1 Following Pediatric Trauma. Shock. 2019;52(3):340–346. PMID: 30289849 https://doi.org/10.1097/sHK.0000000000001267

33. Wei S, Kao LS, Wang HE, Chang R, Podbielski J, Holcomb JB, et al. Protocol for a pilot randomized controlled trial comparing plasma with balanced crystalloid resuscitation in surgical and trauma patients with septic shock. Trauma Surg Acute Care Open. 2018;3(1):e000220. PMID: 30271882 https://doi.org/10.1136/tsaco-2018-000220

34. Schlömmer C, Meier J. Inflammatory response in trauma patients: are there ways to decrease the inflammatory reaction? Curr Opin Anaesthesiol. 2020;33(2):253–258. PMID: 32049884 https://doi.org/10.1097/ACO.0000000000000842

35. Dobson GP, Morris JL, Letson HL. Immune dysfunction following severe trauma: A systems failure from the central nervous system to mitochondria. Front Med (Lausanne). 2022;9:968453. PMID: 36111108 https://doi.org/10.3389/fmed.2022.968453

36. Hunt BJ,Jurd KM.Endothelialcellactivation.Acentral pathophysiological process. BMJ. 1998;316(7141):1328–1329. PMID: 9563977 https://doi.org/10.1136/bmj.316.7141.1328

37. Fernández-Sarmiento J, Schlapbach LJ, Acevedo L, Santana CR, Acosta Y, Diana A, et al. Endothelial Damage in Sepsis: The Importance of Systems Biology. Front Pediatr. 2022;10:828968. PMID: 35356443 https://doi.org/10.3389/fped.2022.828968

38. Yang Z, Le TD, Simovic MO, Liu B, Fraker TL, Cancio TS, et al. Traumatized triad of complementopathy, endotheliopathy, and coagulopathy – Impact on clinical outcomes in severe polytrauma patients. Front Immunol. 2022;13:991048. PMID: 36341368 https://doi.org/10.3389/fimmu.2022.991048

39. Maegele M, Aversa J, Marsee MK, McCauley R, Chitta SH, Vyakaranam S, et al. Changes in Coagulation following Brain Injury. Semin Thromb Hemost. 2020;46(2):155–166. PMID: 32160642 https://doi.org/10.1055/s-0040-1702178

40. White NJ, Ward KR, Pati S, Strandenes G, Cap AP. Hemorrhagic blood failure: Oxygen debt, coagulopathy, and endothelial damage. J Trauma Acute Care Surg. 2017;82(6S Suppl 1):S41–S49. PMID: 28328671 https://doi.org/10.1097/TA.0000000000001436

41. Petros S. Trauma-Induced Coagulopathy. Hamostaseologie. 2019;39(1):20–27. PMID: 30703820 https://doi.org/10.1055/s-0039-1677853

42. Giordano S, Spiezia L, Campello E, Simioni P. The current understanding of trauma-induced coagulopathy (TIC): a focused review on pathophysiology. Intern Emerg Med. 2017;12(7):981–991. PMID: 28477287 https://doi.org/10.1007/s11739-017-1674-0

43. Ostrowski SR, Henriksen HH, Stensballe J, Gybel-Brask M, Cardenas JC, Baer LA, et al. Sympathoadrenal activation and endotheliopathy are drivers of hypocoagulability and hyperfibrinolysis in trauma: A prospective observational study of 404 severely injured patients. J Trauma Acute Care Surg. 2017;82(2):293–301. PMID: 27779595 https://doi.org/10.1097/TA.0000000000001304

44. Chang JC. Disseminated intravascular coagulation: is it fact or fancy? Blood Coagul Fibrinolysis. 2018;29(3):330–337. PMID: 29621007 https://doi.org/10.1097/MBC.0000000000000727

45. Harrington J, Zarzaur BL, Fox EE, Wade CE, Holcomb JB, Savage SA. Variations in clot phenotype following injury: The MA-R ratio and fragile clots. J Trauma Acute Care Surg. 2022;92(3):504–510. PMID: 35196304 https://doi.org/10.1097/TA.0000000000003442

46. Richter RP, Joiner DM, Griffin RL, Jansen JO, Kerby JD, Wade CE, et al. Endotheliopathy is Associated with a 24-hour Fibrinolysis Phenotype Described by Low TEG Lysis and High D-Dimer after Trauma: a Secondary Analysis of the PROPPR Study. Ann Surg Open. 2022;3(1): e116. PMID: 35693425 https://doi.org/10.1097/as9.0000000000000116

47. Johansson PI, Ostrowski SR. Acute coagulopathy of trauma: balancing progressive catecholamine induced endothelial activation and damage by fluid phase anticoagulation. Med Hypotheses. 2010;75(6):564–567. PMID: 20708846 https://doi.org/10.1016/j.mehy.2010.07.031

48. Hahn RG, Patel V, Dull RO. Human glycocalyx shedding: Systematic review and critical appraisal. Acta Anaesthesiol Scand. 2021;65(5):590– 606. PMID: 33595101 https://doi.org/10.1111/aas.13797

49. Gaudette S, Hughes D, Boller M. The endothelial glycocalyx: Structure and function in health and critical illness. J Vet Emerg Crit Care (San Antonio). 2020;30(2):117–134. PMID: 32067360 https://doi.org/10.1111/ vec.12925

50. Patterson EK,Cepinskas G,Fraser DD.Endothelial Glycocalyx Degradation in Critical Illness and Injury. Front Med (Lausanne). 2022;9:898592. PMID: 35872762 https://doi.org/10.3389/fmed.2022.898592

51. Rahbar E, Cardenas JC, Baimukanova G, Usadi B, Bruhn R, Pati S, et al. Endothelial glycocalyx shedding and vascular permeability in severely injured trauma patients. J Transl Med. 2015;13:117. PMID: 25889764 https://doi.org/10.1186/s12967-015-0481-5

52. Wallen TE, Singer KE, Elson NC, Baucom MR, England LG, Schuster RM, et al. Defining Endotheliopathy in Murine Polytrauma Models. Shock. 2022;57(6):291–298. PMID: 35759308 https://doi.org/10.1097/sHK.0000000000001940

53. Suzuki K, Okada H, Sumi K, Tomita H, Kobayashi R, Ishihara T, et al. Syndecan-1 as a severity biomarker for patients with trauma. Front Med (Lausanne). 2022;9:985955. PMID: 36237551 https://doi.org/10.3389/fmed.2022.985955

54. Wade CE, Matijevic N, Wang YW, Rodriguez EG, Lopez E, Ostrowski SR, et al. Absences of Endothelial Microvesicle Changes in the Presence of the Endotheliopathy of Trauma. Shock. 2019;51(2):180–184. PMID: 29621120 https://doi.org/10.1097/SHK.0000000000001149

55. Johansson PI, Stensballe J, Rasmussen LS, Ostrowski SR. A high admission syndecan-1 level, a marker of endothelial glycocalyx degradation, is associated with inflammation, protein C depletion, fibrinolysis, and increased mortality in trauma patients. Ann Surg. 2011;254(2):194–200. PMID: 21772125 https://doi.org/10.1097/SLA.0b013e318226113d

56. Albert V, Subramanian A, Agrawal D, Pati HP, Gupta SD, Mukhopadhyay AK, et al. Acute Traumatic Endotheliopathy in Isolated Severe Brain Injury and Its Impact on Clinical Outcome. Med Sci (Basel). 2018;6(1):5. PMID: 29337920 https://doi.org/10.3390/medsci6010005

57. Gonzalez Rodriguez E, Ostrowski SR, Cardenas JC, Baer LA, Tomasek JS, Henriksen HH, et al. Syndecan-1: A Quantitative Marker for the Endotheliopathy of Trauma. J Am Coll Surg. 2017;225(3):419–427. PMID: 28579548 https://doi.org/10.1016/j.jamcollsurg.2017.05.012

58. Wei S, Gonzalez Rodriguez E, Chang R, Holcomb JB, Kao LS, Wade CE, et al. Elevated Syndecan-1 after Trauma and Risk of Sepsis: A Secondary Analysis of Patients from the Pragmatic, Randomized Optimal Platelet and Plasma Ratios (PROPPR) Trial. J Am Coll Surg. 2018;227(6):587–595. PMID: 30243993 https://doi.org/10.1016/j.jamcollsurg.2018.09.003

59. Henriksen HH,McGarrity S,SigurÐardóttir RS,Nemkov T,D’Alessandro A, Palsson BO, et al. Metabolic Systems Analysis of Shock-Induced Endotheliopathy (SHINE) in Trauma: A New Research Paradigm. Ann Surg. 2020;272(6):1140–1148. PMID: 31274658 https://doi.org/10.1097/sLA.0000000000003307

60. Henriksen HH, Marín de Mas I, Nielsen LK, Krocker J, Stensballe J, Karvelsson ST, et al. Endothelial Cell Phenotypes Demonstrate Different Metabolic Patterns and Predict Mortality in Trauma Patients. Int J Mol Sci. 2023;24(3):2257. PMID: 36768579 https://doi.org/10.3390/ijms24032257

61. Watanabe-Kusunoki K, Nakazawa D, Ishizu A, Atsumi T. Thrombomodulin as a Physiological Modulator of Intravascular Injury. Front Immunol. 2020;11:575890. PMID: 33042158 https://doi.org/10.3389/fimmu.2020.575890

62. Britten MW, Lümers L, Tominaga K, Peters J, Dirkmann D. Glycocalyx components affect platelet function, whole blood coagulation, and fibrinolysis: an in vitro study suggesting a link to trauma-induced coagulopathy. BMC Anesthesiol. 2021;21(1):83. PMID: 33740916 https://doi.org/10.1186/s12871-021-01300-1

63. Kudo D, Goto T, Uchimido R, Hayakawa M, Yamakawa K, Abe T, et al. Coagulation phenotypes in sepsis and effects of recombinant human thrombomodulin: an analysis of three multicentre observational studies. Crit Care. 2021;25(1):114. PMID: 33741010 https://doi.org/10.1186/s13054-021-03541-5

64. Kregel HR, Hatton GE, Isbell KD, Henriksen HH, Stensballe J, Johansson PI, et al. Shock-Induced Endothelial Dysfunction is Present in Patients with Occult Hypoperfusion After Trauma. Shock. 2022;57(1):106–112. PMID: 34905531 https://doi.org/10.1097/SHK.0000000000001866

65. Hatton GE, Isbell KD, Henriksen HH, Stensballe J, Brummerstedt M, Johansson PI, et al. Endothelial Dysfunction is Associated with Increased Incidence, Worsened Severity, and Prolonged Duration of Acute Kidney Injury After Severe Trauma. Shock. 2021;55(3):311–315. PMID: 32826819 https://doi.org/10.1097/SHK.0000000000001638

66. Xu X, Kozar R, Zhang J, Dong J-F. Diverse activities of von Willebrand factor in traumatic brain injury and associated coagulopathy. J Thromb Haemost. 2020;18(12):3154–3162. PMID: 32931638 https://doi.org/10.1111/jth.15096

67. Goncharov NV, Nadeev AD, Jenkins RO, Avdonin PV. Markers and Biomarkers of Endothelium: When Something Is Rotten in the State. Oxid Med Cell Longev. 2017;2017:9759735. PMID: 29333215 https://doi.org/10.1155/2017/9759735

68. Zeineddin A, Dong JF, Wu F, Terse P, Kozar RA. Role of Von Willebrand Factor after Injury: It May Do More Than We Think. Shock. 2021;55(6):717–722. PMID: 33156241 https://doi.org/10.1097/sHK.0000000000001690

69. Naumann DN, Hazeldine J, Midwinter MJ, Hutchings SD, Harrison P. Poor microcirculatory flow dynamics are associated with endothelial cell damage and glycocalyx shedding after traumatic hemorrhagic shock. J Trauma Acute Care Surg. 2018;84(1):81–88. PMID: 28885470 https://doi.org/10.1097/TA.0000000000001695

70. Cusack R, Leone M, Rodriguez AH, Martin-Loeches I. Endothelial Damage and the Microcirculation in Critical Illness. Biomedicines. 2022;10(12):3150. PMID: 36551905 https://doi.org/10.3390/biomedicines10123150

71. Naumann DN, Hazeldine J, Dinsdale RJ, Bishop JR, Midwinter MJ, Harrison P, et al. Endotheliopathy is associated with higher levels of cell-free DNA following major trauma: A prospective observational study. PLoS One. 2017;12(12):e0189870. PMID: 29261771 https://doi.org/10.1371/journal.pone.0189870

72. Gonzalez Rodriguez E, Cardenas JC, Lopez E, Cotton BA, Tomasek JS, OstrowskiSR,etal.Early IdentificationofthePatientwith Endotheliopathy of Trauma by Arrival Serum Albumin. Shock. 2018;50(1):31–37. PMID: 29049135 https://doi.org/10.1097/SHK.0000000000001036

73. Torres LN, Chung KK, Salgado CL, Dubick MA, Torres Filho IP. Lowvolume resuscitation with normal saline is associated with microvascular endothelial dysfunction after hemorrhage in rats, compared to colloids and balanced crystalloids. Crit Care. 2017;21(1):160. PMID: 28659186 https://doi.org/10.1186/s13054-017-1745-7

74. Chi Y, Jiang X, Chai J, Chang Y, Liu T, Liu X, et al. Protective effect of restrictive resuscitation on vascular endothelial glycocalyx in pigs with traumatic hemorrhagic shock. Ann Transl Med. 2022;10(4):177. PMID: 35280352 https://doi.org/10.21037/atm-21-7004

75. Barry M, Trivedi A, Vivona LR, Chui J, Pathipati P, Miyazawa B, Pati S. Recovery of Endotheliopathy at 24 Hours in an Established Mouse Model of Hemorrhagic Shock and Trauma. Shock. 2022;58(4):313–320. PMID: 36256627 https://doi.org/10.1097/SHK.0000000000001984

76. Barry M, Pati S. Targeting repair of the vascular endothelium and glycocalyx after traumatic injury with plasma and platelet resuscitation. Matrix Biol Plus. 2022;14:100107. PMID: 35392184 https://doi.org/10.1016/j.mbplus.2022.100107

77. Baucom MR, Wallen TE, Ammann AM, England LG, Schuster RM, Pritts TA, et al. Blood component resuscitative strategies to mitigate endotheliopathy in a murine hemorrhagic shock model. J Trauma Acute Care Surg. 2023;95(1):21–29. PMID: 37012625 https://doi.org/10.1097/TA.0000000000003942

78. Pati S, Potter DR, Baimukanova G, Farrel DH, Holcomb JB, Schreiber MA. Modulating the endotheliopathy of trauma: Factor concentrate versus fresh frozen plasma. J Trauma Acute Care Surg. 2016;80(4):576–584. PMID: 26808040 https://doi.org/10.1097/TA.0000000000000961

79. Haywood-Watson RJ, Holcomb JB, Gonzalez EA, Peng Z, Pati S, Park PW, et al. Modulation of syndecan-1 shedding after hemorrhagic shock and resuscitation. PLoS One. 2011;6(8):e23530. PMID: 21886795 https://doi.org/10.1371/journal.pone.0023530

80. Holcomb JB, Pati S. Optimal trauma resuscitation with plasma as the primary resuscitative fluid: the surgeon’s perspective. Hematology Am Soc Hematol Educ Program. 2013;2013:656–659. PMID: 24319247 https://doi.org/10.1182/asheducation-2013.1.656

81. Wu F, Chipman A, Pati S, Miyasawa B, Corash L, Kozar RA. Resuscitative Strategies to Modulate the Endotheliopathy of Trauma: From Cell to Patient. Shock. 2020;53(5):575–584. PMID: 31090680 https://doi.org/10.1097/SHK.0000000000001378

82. Peng HT, Nascimento B, Rhind SG, da Luz L, Beckett A. Evaluation of trauma-induced coagulopathy in the fibrinogen in the initial resuscitation of severe trauma trial. Transfusion. 2021;61 (Suppl 1): S49–S57. PMID: 34269460 https://doi.org/10.1111/trf.16488

83. Chipman AM, Wu F, Kozar RA. Fibrinogen inhibits microRNA-19b, a novel mechanism for repair of haemorrhagic shock-induced endothelial cell dysfunction. Blood Transfus. 2021;19(5):420–427. PMID: 33539284 https://doi.org/10.2450/2021.0361-20

84. Diebel LN, Liberati DM, Hla T, Steven Swendeman S. Plasma components to protect the endothelial barrier after shock: A role for sphingosine 1phosphate. Surgery. 2022;171(3):825–832. PMID: 34865862 https://doi.org/10.1016/j.surg.2021.08.068

85. Barry M, Trivedi A, Miyazawa BY, Vivona LR, Khakoo M, Zhang H, et al. Cryoprecipitate attenuates the endotheliopathy of trauma in mice subjected to hemorrhagic shock and trauma. J Trauma Acute Care Surg. 2021;90(6):1022–1031. PMID: 33797484 https://doi.org/10.1097/TA.0000000000003164

86. Schaid TR Jr, Hansen KC, Sauaia A, Moore EE, DeBot M, Cralley AL, et al. Postinjury complement C4 activation is associated with adverse outcomes and is potentially influenced by plasma resuscitation. J Trauma Acute Care Surg. 2022;93(5):588–596. PMID: 35610738 https://doi.org/10.1097/TA.0000000000003713

87. Hegde S, Zheng Y, Cancelas JA. Novel blood derived hemostatic agents for bleeding therapy and prophylaxis. Curr Opin Hematol. 2022;29(6):281–289. PMID: 35942861 https://doi.org/10.1097/MOH.0000000000000737

88. Stensballe J, Ulrich AG, Nilsson JC, Henriksen HH, Olsen PS, Ostrowski SR, et al. Resuscitation of Endotheliopathy and Bleeding in Thoracic Aortic Dissections: The VIPER-OCTA Randomized Clinical Pilot Trial. Anesth Analg. 2018;127(4):920–927. PMID: 29863610 https://doi.org/10.1213/ANE.0000000000003545

89. Trivedi A, Potter DR, Miyazawa BY, Lin M, Vivona LR, Khakoo MA, et al. Freeze-dried platelets promote clot formation, attenuate endothelial cell permeability, and decrease pulmonary vascular leak in a murine model of hemorrhagic shock. J Trauma Acute Care Surg. 2021;90(2):203–214. PMID: 33060537 https://doi.org/10.1097/TA.0000000000002984

90. Diebel LN, Martin JV, Liberati DM. Early tranexamic acid administration ameliorates the endotheliopathy of trauma and shock in an in vitro model. J Trauma Acute Care Surg. 2017;82(6):1080–1086. PMID: 28328682 https://doi.org/10.1097/TA.0000000000001445

91. Prudovsky I, Carter D, Kacer D, Palmeri M, Soul T, Kumpel C, et al. Tranexamic acid suppresses the release of mitochondrial DNA, protects the endothelial monolayer and enhances oxidative phosphorylation. J Cell Physiol. 2019;234(11):19121–19129. PMID: 30941770 https://doi.org/10.1002/jcp.28603

92. Anderson TN, Hinson HE, Dewey EN, Rick EA, Schreiber MA, Rowell SE. Early Tranexamic Acid Administration After Traumatic Brain Injury Is Associated with Reduced Syndecan-1 and Angiopoietin-2 in Patients with Traumatic Intracranial Hemorrhage. J Head Trauma Rehabil. 2020;35(5):317–323. PMID: 32881765 https://doi.org/10.1097/HTR.0000000000000619

93. Naumann DN, Hazeldine J, Davies DJ, Bishop J, Midwinter MJ, Belli A, et al. Endotheliopathy of Trauma is an on-Scene Phenomenon, and is Associated with Multiple Organ Dysfunction Syndrome: A Prospective Observational Study. Shock. 2018;49(4):420–428. PMID: 28945676 https://doi.org/10.1097/SHK.0000000000000999

94. Diebel LN, Wheaton M, Liberati DM. The protective role of estrogen on endothelial and glycocalyx barriers after shock conditions: A microfluidic study. Surgery. 2021;169(3):678–685. PMID: 32988619 https://doi.org/10.1016/j.surg.2020.08.006

95. Johansson PI, Eriksen CF, Schmal H, Gaarder C, Pall M, Henriksen HH, et al. Efficacy and safety of iloprost in trauma patients with haemorrhagic shock-induced endotheliopathy-Protocol for the multicentre randomized, placebo-controlled, blinded, investigator-initiated shinetrauma trial. Acta Anaesthesiol Scand. 2021;65(4):551–557. PMID: 33393084 https://doi.org/10.1111/aas.13776


Рецензия

Для цитирования:


Матюхин В.В., Маскин С.С., Александров В.В., Дудченко Г.П., Островский О.В., Алимов М.Н., Верле О.В. Эндотелиальная дисфункция при травме: патогенез, клиническое значение, диагностика и лечение. Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь». 2024;13(4):617-630. https://doi.org/10.23934/2223-9022-2024-13-4-617-630

For citation:


Matyukhin V.V., Maskin S.S., Aleksandrov V.V., Dudchenko G.P., Ostrovsky O.V., Alimov M.N., Werle O.V. Endothelial Dysfunction in Trauma: Pathogenesis, Clinical Significance, Diagnosis and Treatment. Russian Sklifosovsky Journal "Emergency Medical Care". 2024;13(4):617-630. (In Russ.) https://doi.org/10.23934/2223-9022-2024-13-4-617-630

Просмотров: 225


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2223-9022 (Print)
ISSN 2541-8017 (Online)