Preview

Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»

Расширенный поиск

О возможностях и значении беспилотных летательных аппаратов для догоспитального этапа медицинской помощи

https://doi.org/10.23934/2223-9022-2024-13-3-501-513

Аннотация

Беспилотные летательные аппараты являются важной техникой и неотложным средством при поисково-спасательных работах. Они способствуют сокращению времени, необходимого для поиска и оказания помощи раненым, больным и пострадавшим, находящимся на большом территориальном удалении и в трудно доступных местах. С помощью компьютерного «зрения» и таких датчиков, как шумовое зондирование, бинарное зондирование, вибрация и тепловое зондирование, дроны способны обеспечить поиск живых пациентов не только в море, высоко в горах и в шахтах, но и погребенных под завалами зданий и сооружений. Такие аппараты демонстрируют преимущества при экстренной и неотложной доставке медицинской реанимационной и другой медицинской техники, лекарственных средств, препаратов крови и органов для трансплантации пациентам, особенно находящимся в удаленных местах. С помощью беспилотников возможно эффективно проводить сортировку пациентов при массовых санитарных потерях, осуществлять дезинфекцию и дистанционно вести мониторинг состояния здоровья пациентов при высококонтагиозных инфекционных заболеваниях и других патологических состояниях, а также сократить время для предоставления других медицинских и гуманитарных услуг населению. Очевидно, что применение беспилотников требует дальнейшего изучения их перспективных возможностей, особенно в реальных условиях деятельности служб скорой медицинской помощи.

Об авторах

Л. В. Писаренко
ГБУЗ Москвы особого типа «Московский территориальный научно-практический центр медицины катастроф (ЦЭМП) ДЗМ»
Россия

Писаренко Леонид Васильевич, доктор медицинских наук, профессор, ведущий научный сотрудник научного отдела организации экстренной медицинский помощи ГБУЗ особого типа МТНПЦМК (ЦЕМП) ДЗМ

129010, Москва, Большая Сухаревская пл., д. 5/1, стр. 1



С. А. Гуменюк
ГБУЗ Москвы особого типа «Московский территориальный научно-практический центр медицины катастроф (ЦЭМП) ДЗМ»
Россия

Гуменюк Сергей Андреевич, доктор медицинских наук, доцент, директор ГБУЗ особого типа МТНПЦМК (ЦЕМП) ДЗМ

129010, Москва, Большая Сухаревская пл., д. 5/1, стр. 1



В. И. Потапов
ГБУЗ Москвы особого типа «Московский территориальный научно-практический центр медицины катастроф (ЦЭМП) ДЗМ»
Россия

Потапов Владимир Игоревич, доктор медицинских наук, заведующий научным отделом организации экстренной медицинский помощи ГБУЗ особого типа МТНПЦМК (ЦЕМП) ДЗМ

129010, Москва, Большая Сухаревская пл., д. 5/1, стр. 1



Список литературы

1. Приказ Министерства здравоохранения РФ от 20 июня 2013 г. № 388н «Об утверждении Порядка оказания скорой, в том числе скорой специализированной, медицинской помощи» (с изменениями и дополнениями) URL: https://base.garant.ru/70438200/?ysclid=lnq0f3wlm0816266597 [Дата обращения 20.08.2024]

2. Шарипов А.М., Сафаров З.Ф. Проблемы современной догоспитальной помощи и медицины катастроф. Вестник национального детского медицинского центра (Узбекистан). 2022;(2):91–95.

3. Комплексное наблюдение условий жизни населения. Итоги наблюдения. Статистические таблицы. Росстат. 2018. Таблицы 34.1-Получение скорой медицинской помощи; 34.1.1-Получение скорой медицинской помощи лицами старше трудоспособного возраста. URL: https://rosstat.gov.ru/free_doc/new_site/KOUZ18/index.html [Дата обращения 20.08.2024]

4. Колесников А.В., Бреусов А.В., Шичанин В.В., Бреусов Р.А. Удовлетворенность населения региона качеством работы службы скорой медицинской помощи. Вестник Российского университета дружбы народов. Серия: Медицина. 2017;21(1):109–116. https://doi.org/10.22363/2313-0245-2017-21-1-109-116

5. Nimilan V, Manohar G, Sudha R, Pearley S. Drone-aid: An aerial medical assistance. International Journal of Innovative Technology and Exploring Engineering (IJITEE). 2019;8(11 Suppl):1288–1292. https://doi.org/10.35940/ijitee.K1260.09811S19

6. Pulsiri N, Vatananan-Thesenvilz R. Drones in Emergency Medical Services: A Systematic Literature Review with Bibliometric Analysis. International Journal of Innovation and Technology Management. 2021;18(4):2097001. https://doi.org/10.1142/S0219877020970019

7. Коннова Л.А., Бончук Г.И. Об истории беспилотных летательных аппаратов и перспективах их использования в практике спасательных работ. Российские беспилотники. 2018. URL: https://russiandrone.ru/publications/ob-istorii-bespilotnykh-letatelnykh-apparatov-i-perspektivakh-ikh-ispolzovaniya-v-praktike-spasateln/ [Дата обращения 20.08.2024]

8. Schaller A-A, Vatananan-Thesenvitz R, Pulsiri N, Schaller A-M. The Rise of digital business models: An Analysis of the knowledge base. In: 2019 Portland International Conference on Management of Engineering and Technology (PICMET), (Portland, 25-29 August 2019). Portland, OR, USA;2019. pp. 609-621. https://doi.org/10.23919/picmet.2019.8893696

9. Mairaj A, Baba A, Javaid A. Application specific drone simulators; Recent advances and challenges. Simulation Modelling Practice and Theory. 2019;94(4):100–117. https://doi.org/10.1016/j.simpat.2019.01.004

10. Rosser JB Jr, Parker BC, Vignesh V. Medical Applications of Drones for Disaster Relief: A Review of the Literature. Surg Technol Int. 2018;33:17–22. PMID: 30384393

11. Rosser JC Jr, Vignesh V, Terwilliger BA, Parker BC. Surgical and Medical Applications of Drones: A Comprehensive Review. JSLS. 2018;22(3):e2018.00018. PMID: 30356360 https://doi.org/10.4293/JSLS.2018.00018

12. Johnson AM, Cunningham CJ, Arnold E, Rosamond WD, Zègre-Hemsey JK. Impact of Using Drones in Emergency Medicine: What Does the Future Hold? Open Access Emerg Med. 2021;13:487–498. PMID: 34815722 https://doi.org/10.2147/OAEM.S247020 eCollection 2021.

13. Straubinger A, Michelmann J, Biehle T. Business model options for passenger urban air mobility. CEAS Aeronaut J. 2021;12(2):361–380. PMID: 33868510 https://doi.org/10.1007/s13272-021-00514-w

14. Ferrão IG, Espes D, Dezan C, Branco KR. Security and Safety Concerns in Air Taxis: A Systematic Literature Review. Sensors (Basel). 2022;22(18):6875. PMID: 36146224 https://doi.org/10.3390/s22186875

15. Ploetner KO, Al Haddad C, Antoniou C, Frank F, Fu M, Kabel S, et al. Long-term application potential of urban air mobility complementing public transport: an upper Bavaria example. CEAS Aeronaut J. 2020;11(4):991–1007. PMID: 33403052 https://doi.org/10.1007/s13272-020-00468-5

16. Feldhoff E, Soares Roque G. Determining infrastructure requirements for an air taxi service at Cologne Bonn Airport. CEAS Aeronaut J. 2021;12(4):821–833. PMID: 34466167 https://doi.org/10.1007/s13272-021-00544-4

17. Birrell S, Payre W, Zdanowicz K, Herriotts P. Urban air mobility infrastructure design: Using virtual reality to capture user experience within the world’s first urban airport. Appl Ergon. 2022;105:103843. PMID: 35810501 https://doi.org/10.1016/j.apergo.2022.103843

18. Rajendran S, Pagel E. Recommendations for emerging air taxi network operations based on online review analysis of helicopter services. Heliyon. 2020;6(12):e05581. PMID: 33305048 https://doi.org/10.1016/j.heliyon.2020.e05581 eCollection 2020 Dec.

19. Li T, Hu H. Development of the Use of Unmanned Aerial Vehicles (UAVs) in Emergency Rescue in China. Risk Manag Healthc Policy. 2021;14:4293–4299. PMID: 34703340 https://doi.org/10.2147/RMHP.S323727 eCollection 2021.

20. Mohd Daud SMS, Mohd Yusof MYP, Heo CC, Khoo LS, Chainchel Singh MK, Mahmood MS, et al. Applications of drone in disaster management: A scoping review. Sci Justice. 2022;62(1):30–42. PMID: 35033326 https://doi.org/10.1016/j.scijus.2021.11.002

21. Gross RJ. Complete evolution and history of drones: from 1800s to 2022. Available at: https://www.propelrc.com/history-of-drones/ [Accessed 20.08.2024]

22. Oh D, Han J. Smart Search System of Autonomous Flight UAVs for Disaster Rescue. Sensors (Basel). 2021;21(20):6810. PMID: 34696023 https://doi.org/10.3390/s21206810

23. Seguin C, Blaquière G, Loundou A, Michelet P, Markarian T. Unmanned aerial vehicles (drones) to prevent drowning. Resuscitation. 2018;127:63–67. PMID: 29653153 https://doi.org/10.1016/j.resuscitation.2018.04.005

24. Kim ML, Pevzner LD, Temkin IO. Development of automatic system for Unmanned Aerial Vehicle (UAV) motion control for mine conditions. Mining Science and Technology (Russia). 2021;6(3):203–210. https://doi.org/10.17073/2500-0632-2021-3-203-210

25. Karaca Y, Cicek M, Tatli O, Sahin A, Pasli S, Beser MF, et al. The potential use of unmanned aircraft systems (drones) in mountain search and rescue operations. Am J Emerg Med. 2018;36(4):583–588. PMID: 28928001 https://doi.org/10.1016/j.ajem.2017.09.025

26. Cappello TD, Masè M, Falla M, Regli IB, Mejia-Aguilar A, Mayrgündter S, et al. Drones reduce the treatment-free interval in search and rescue operations with telemedical support – A randomized controlled trial. Am J Emerg Med. 2023;66:40–44. PMID: 36680868 https://doi.org/10.1016/j.ajem.2023.01.020

27. van Veelen MJ, Voegele A, Rauch S, Kaufmann M, Brugger H, Strapazzon G. COVID-19 Pandemic in Mountainous Areas: Impact, Mitigation Strategies, and New Technologies in Search and Rescue Operations. High Alt Med Biol. 2021;22(3):335–341. PMID: 34319777 https://doi.org/10.1089/ham.2020.0216

28. Braun J, Gertz SD, Furer A, Bader T, Frenkel H, Chen J, et al. The promising future of drones in prehospital medical care and its application to battlefield medicine. J Trauma Acute Care Surg. 2019;87(1S Suppl 1):S28–S34. PMID: 31246903 https://doi.org/10.1097/TA.0000000000002221

29. Yamazaki Y, Premachandra C, Perea CJ. Audio-Processing-Based human detection at disaster sites with unmanned aerial vehicle. IEEE Access. 2020;8:101398–101405. https://doi.org/10.1109/ACCESS.2020.2998776

30. Al-Naji A, Perera AG, Mohammed SL, Chahl J. Life Signs Detector Using a Drone in Disaster Zones. Remote Sensing. 2019;11(20):2441. https://doi.org/10.3390/rs11202441

31. Lygouras E, Santavas N, Taitzoglou A, Tarchanidis K, Mitropoulos A, Gasteratos A. Unsupervised Human Detection with an Embedded Vision System on a Fully Autonomous UAV for Search and Rescue Operations. Sensors (Basel). 2019;19(16):3542. PMID: 31416131 https://doi.org/10.3390/s19163542

32. Handford C, Reeves F, Parker P. Prospective use of unmanned aerial vehicles for military medical evacuation in future conflicts. J R Army Med Corps. 2018;164(4):293–296. PMID: 29523753 https://doi.org/10.1136/jramc-2017-000890

33. Lu J, Wang X, Chen L, Sun X, Li R, Zhong W, et al. Unmanned aerial vehicle based intelligent triage system in mass-casualty incidents using 5G and artificial intelligence. World J Emerg Med. 2023;14(4):273–279. PMID: 37425090 https://doi.org/10.5847/wjem.j.1920-8642.2023.066

34. Jain T, Sibley A, Stryhn H, Hublouc I. Comparison of unmanned aerial vehicle technology-assisted triage versus, standard practice in triaging casualties by paramedic students in a mass-casualty incident scenario. Prehosp Disaster Med. 2018;33(4):375–380. PMID: 30001765 https://doi.org/10.1017/S1049023X18000559

35. Meshcheryakov RV, Trefilov PM, Chekhov AV, Diane SAK, Rusakov KD, Lesiv EA, et al. An application of swarm of quadcopters for searching operations. IFAC-PapersOnLine. 2019;52(25):14–18. https://doi.org/10.1016/j.ifacol.2019.12.438

36. Alotaibi ET, Alqefari SS, Koubaa A. LSAR: Multi-UAV collaboration for search and rescue missions. IEEE Acces. 2019;7:55817–55832. https://doi.org/10.1109/ACCESS.2019.2912306

37. Abrahamsen HB. A remotely piloted aircraft system in major incident management: concept and pilot, feasibility study. BMC Emerg Med. 2015;15:12. https://doi.org/10.1186/s12873-015-0036-3

38. Roberts NB, Ager A, Leith T, Lott I, Mason-Maready M, Nix T, et al. Current summary of the evidence in drone-based emergency medical services care. Resusc Plus. 2023;13:100347. PMID: 36654723 https://doi.org/10.1016/j.resplu.2022.100347 eCollection 2023 Mar.

39. Bogle B, Rosamond WD, Snyder KT, Zègre-Hemsey JK. The case for drone-assisted emergency response to cardiac arrest: an optimized statewide deployment approach. N C Med J. 2019;80(4):204–212. PMID: 31278178 https://doi.org/10.18043/ncm.80.4.204

40. Banerjee P, Ganti L, Stead TG, Vera AE, Vittone R, Pepe PE. Every one-minute delay in EMS on-scene resuscitation after out-of-hospital pediatric cardiac arrest lowers ROSC by 5%. Resusc Plus. 2021;5:100062. PMID: 34223334 https://doi.org/10.1016/j.resplu.2020.100062 eCollection 2021 Mar.

41. Lim JCL, Loh N, Lam HH, Lee JW, Liu N, Yeo JW, et al. The Role of Drones in Out-of-Hospital Cardiac Arrest: A Scoping Review. J Clin Med. 2022;11(19):5744. PMID: 36233610 https://doi.org/10.3390/jcm11195744

42. Cheskes S, McLeod SL, Nolan M, Snobelen P, Vaillancourt C, Brooks SC, et al. Improving Access to Automated External Defibrillators in Rural and Remote Settings: A Drone Delivery Feasibility Study. J Am Heart Assoc. 2020;9(14):e016687. PMID: 32627636 https://doi.org/10.1161/JAHA.120.016687

43. Ryan JP. The feasibility of medical unmanned aerial systems in suburban areas. Am J Emerg Med. 2021;50:532–545. PMID: 34543836 https://doi.org/10.1016/j.ajem.2021.08.064

44. Robakowska M, Ślęzak D, Żuratyński P, Tyrańska-Fobke A, Robakowski P, Prędkiewicz P, et al. Possibilities of Using UAVs in Pre-Hospital Security for Medical Emergencies. Int J Environ Res Public Health. 2022;19(17):10754. PMID: 36078469 https://doi.org/10.3390/ijerph191710754

45. Mao R, Du B, Sun D, Kong N. Optimizing a UAV-based emergency medical service network for trauma injury patients. In: IEEE 15th International Conference on Automation Science and Engineering (CASE), (Vancouver, BC, Canada, 22-26 August 2019). Vancouver; 2019. p. 721–726. https://doi.org/10.1109/COASE.2019.8843138

46. Fischer P, Rohrer U, Nürnberger P, Manninger M, Scherr D, von Lewinski D, et al. Automated external defibrillator delivery bydrone in mountainous regions to support basic life support – A simulation study. Resusc Plus. 2023;14:100384. PMID: 37091925 https://doi.org/10.1016/j.resplu.2023.100384 eCollection 2023 Jun.

47. Homier V, Brouard D, Nolan M, Roy M-A, Pelletier P, McDonald M, et al. Drone versus ground delivery of simulated blood products to an urban trauma center: The Montreal Medi-Drone pilot study. J Trauma Acute Care Surg. 2020;90(3):515–521. PMID: 33017356 https://doi.org/10.1097/TA.0000000000002961

48. Scalea JR, Restaino S, Scassero M, Blankenship G, Bartlett ST, Wereley N. An Initial Investigation of Unmanned Aircraft Systems (UAS) and Real-Time Organ Status Measurement for Transporting Human Organs. IEEE J Transl Eng Health Med. 2018;6:4000107. PMID: 30464862 https://doi.org/10.1109/JTEHM.2018.2875704 еCollection 2018.

49. Yakushiji K, Fujita H, Murata M, Hiroi N, Hamabe Y, Yakushiji F. Short-range transportation using unmanned aerial vehicles (UAVs) during disasters in Japan. Drones. 2020;4(4):68. https://doi.org/10.3390/drones4040068

50. Kumar A, Sharma K, Singh H, Naugriya SG, Gill SS, Buyya R. A drone-based networked system and methods for combating coronavirus disease (COVID-19) pandemic. Future Gener Comput Syst. 2021;115:1–19. PMID: 32895585 https://doi.org/10.1016/j.future.2020.08.046

51. Tejativaddbana P, Suriyawongpaisal W, Kasemsup V, Suksaroj T. The roles of village health volunteers: COVID-19 prevention and control in Thailand. Asia Pacific Journal of Health Management. 2020;15(3):18–22. https://doi.org/10.24083/apjhm.v15i3.477

52. Chamola V, Hassija V, Gupta V, Guizani M. A comprehensive review of the COVID-19 pandemic and the role of IoT, drones, AI, blockchain, and 5G in managing its impact. IEEE Access. 2020;8:90225-90265. https://doi.org/10.1109/ACCESS.2020.2992341

53. Kotlinski M, Calkowska JK. U-Space and UTM Deployment as an Opportunity for More Complex UAV Operations Including UAV Medical Transport. J Intell Robot Syst. 2022;106(1):12. PMID: 36039343 https://doi.org/10.1007/s10846-022-01681-6

54. Vatananan-Thesenvitz R, Schaller A-A, Shannon RA. Bibbometric review of the knowledge base for innovation in sustainable development. Sustainability. 2019;11(20):5783–5805. https://doi.org/10.3390/su11205783

55. Boedecker H. The 2021 Drone Regulation-What is new? What is planned? Drone Market 2021. URL: https://droneii.com/the-2021-drone-regulation-what-is-new-what-is-planned

56. Lin CF, Lin TJ, Liao WS, Lan H, Lin JY, Chin CH, et al. Solar power can substantially prolong maximum achievable airtime of quadcopler drones. Adv Sci (Weinh). 2020;7(20):2001497. PMID: 33101858 https://doi.org/10.1002/adv.202001497 eCollection 2020 Oct.

57. Basheer AA. Advances in the smart materials applications in the aerospace industries. Aircraft Engineering and Aerospace Technology. 2020;92(7):1027–1035. https://doi.org/10.1108/aeat-02-2020-0040

58. Фаттахов М.Р., Киреев А.В., Клещ В.С. Рынок беспилотных авиационных систем в России: состояние и особенности функционирования в макроэкономических условиях 2022 года. Вопросы инновационной экономики. 2022;12(4):2507–2528. https://doi.org/10.18334/vinec.12.4.116912


Рецензия

Для цитирования:


Писаренко Л.В., Гуменюк С.А., Потапов В.И. О возможностях и значении беспилотных летательных аппаратов для догоспитального этапа медицинской помощи. Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь». 2024;13(3):501-513. https://doi.org/10.23934/2223-9022-2024-13-3-501-513

For citation:


Pisarenko L.V., Gumenyuk S.A., Potapov V.I. On the Possibilities and Significance of Unmanned Aerial Vehicles for the Pre- Hospital Stage of Medical Care. Russian Sklifosovsky Journal "Emergency Medical Care". 2024;13(3):501-513. (In Russ.) https://doi.org/10.23934/2223-9022-2024-13-3-501-513

Просмотров: 510


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2223-9022 (Print)
ISSN 2541-8017 (Online)