Preview

Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»

Расширенный поиск

Влияние SARS-CoV-2 на кишечник и его микробиом: что мы знаем и что хотели бы знать

https://doi.org/10.23934/2223-9022-2023-12-4-658-666

Аннотация

   В обзоре рассмотрены теоретические предпосылки и результаты первых исследований влияния SARS­CoV­2 на кишечник и его микробиом. Полученные данные свидетельствуют о длительной персистенции вируса в клетках слизистой оболочки кишечника. Также выявлено усиление процессов транслокации микробных клеток и микробных метаболитов, связанное с вызванными вирусом воспалительными процессами в эндотелиальных клетках слизистой оболочки кишечника. У пациентов с COVID-19 структура и функциональная активность микробиома кишечника значительно изменяются в течение заболевания. Происходит снижение видового разнообразия, начинают доминировать виды, которые не обнаруживаются в микробиоме здоровых людей. Полученные результаты позволяют предполагать, что состояние микробиома кишечника может сильно влиять на течение и исход ковидной инфекции.

Об авторах

Н. В. Евдокимова
ГБУЗ «Научно-исследовательский институт скорой помощи им. Н.В. Склифосовского ДЗМ»
Россия

Наталья Витальевна Евдокимова, кандидат биологических наук, старший научный сотрудник

лаборатория клинической микробиологии

129090

Б. Сухаревская пл., д. 3

Москва



Т. В. Черненькая
ГБУЗ «Научно-исследовательский институт скорой помощи им. Н.В. Склифосовского ДЗМ»
Россия

Татьяна Витальевна Черненькая, кандидат медицинских наук, заведующая лабораторией

лаборатория клинической микробиологии

129090

Б. Сухаревская пл., д. 3

Москва



Список литературы

1. Liang S, Wu X, Hu X, Wang T, Jin F. Recognizing Depression from the Microbiota Gut Brain Axis. Int J Mol Sci. 2018;19(6):1592. PMID: 29843470 doi: 10.3390/ijms19061592

2. Budden KF, Gellatly SL, Wood DLA, Cooper MA, Morrison M, Hugenholtz P, et al. Emerging Pathogenic Links Between Microbiota and the Gut-Lung Axis. Nat Rev Microbiol. 2017;15(1):55–63. PMID: 27694885 doi: 10.1038/nrmicro.2016.142

3. Enaud R, Prevel R, Ciarlo E, Beaufils F, Wieërs G, Guery B, et al. The Gut-Lung Axis in Health and Respiratory Diseases: A Place for Inter-Organ and Inter-Kingdom Crosstalks. Front Cell Infect Microbiol. 2020;10:9. PMID: 32140452 doi: 10.3389/fcimb.2020.00009

4. Chakaroun RM, Massier L, Kovacs P. Gut Microbiome, Intestinal Permeability, and Tissue Bacteria in Metabolic Disease: Perpetrators or Bystanders? Nutrients. 2020;12(4):1082. PMID: 32295104 doi: 10.3390/nu12041082

5. Fehr AR, Perlman S. Coronaviruses: An overview of their replication and pathogenesis. In: Maier HJ, Bickerton E, Britton P. (eds.) Coronaviruses Methods and Protocols. New York, NY, USA: Springer; 2015. p.1–23.

6. Yuen K-S, Ye Z-W, Fung S-Y, Chan C-P, Jin D-Y. SARS-CoV-2 and COVID-19: The Most Important Research Questions. Cell Biosci. 2020;10:40. PMID: 32190290 doi: 10.1186/s13578-020-00404-4

7. Raoult D, Hsueh PR, Stefani S, Rolain JM. COVID-19 Therapeutic and Prevention. Int J Antimicrob Agents. 2020;55(4):105937. PMID: 32151714 doi: 10.1016/j.ijantimicag.2020.105937

8. Gumusova SO, Yazici Z, Albayrak H, Meral Y. Rotavirus and Coronavirus Prevalances in Healthy Calves and Calves with Diarrhoea. Medecyna Wet. 2007;63(1):62–64.

9. Postler TS, Ghosh S. Understanding the Holobiont: How Microbial Metabolites Affect Human Health and Shape the Immune System. Cell Metab. 2017;26(1):110–130. PMID: 28625867 doi: 10.1016/j.cmet.2017.05.008

10. Chen Z-R, Liu J, Liao Z-G, Zhou J, Peng H-W, Gong F, et al. COVID-19 and gastroenteric manifestations. World J Clin Cases. 2021;9(19):4990–4997. PMID: 34307549 doi: 10.12998/wjcc.v9.i19.4990

11. Perisetti A, Goyal H, Gajendran M, Boregowda U, Mann R, Sharma N. Prevalence, mechanisms, and implications of gastrointestinal symptoms in COVID-19. Front Med. 2020;7:588711. PMID: 33195352 doi: 10.3389/fmed.2020.588711

12. Fang D, Ma J, Guang J, Wang M, Song Y, Tian D. Manifestations of digestive system in hospitalized patients with novel coronavirus pneumonia in Wuhan, China: A single-center, descriptive study. Chin J Dig. 2020;(12):E005.

13. Guan W-J, Ni Z-Y, Hu Y, Liang W-H, Ou C-Q, He J-X, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020;382(18):1708–1720. PMID: 32109013 doi: 10.1056/NEJMoa2002032

14. Tian Y, Rong L, Nian W, He Y. Review article: Gastrointestinal features in COVID-19 and the possibility of faecal transmission. Aliment Pharmacol Ther. 2020;51(9):843–851. PMID: 32222988 doi: 10.1111/apt.15731

15. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020;323(11):1061–1069. PMID: 32031570 doi: 10.1001/jama.2020.1585

16. Zhang W, Du R-H, Li B, Zheng X-S, Yang X-L, Hu B, et al. Molecular and serological investigation of 2019-nCoV infected patients: Implication of multiple shedding routes. Emerg Microbes Infect. 2020;9(1):386–389. PMID: 32065057 doi: 10.1080/22221751.2020.1729071

17. Xiao F, Tang M, Zheng X, Liu Y, Li X, Shan H. Evidence for gastrointestinal infection of SARS-CoV-2. Gastroenterology. 2020;158(6):1831–1833. PMID: 32142773 doi: 10.1053/j.gastro.2020.02.055

18. Wu Y, Guo C, Tang L, Hong Z, Zhou J, Dong X, et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol Hepatol. 2020;5(5):434–435. PMID: 32199469 doi: 10.1016/S2468-1253(20)30083-2

19. Jiang X, Luo M, Zou Z, Wang X, Chen C, Qiu J. Asymptomatic SARS-CoV-2 infected case with viral detection positive in stool but negative in nasopharyngeal samples lasts for 42 days. J Med Virol. 2020;92(10):1807–1809. PMID: 32330309 doi: 10.1002/jmv.25941

20. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–280. PMID: 32142651 doi: 10.1016/j.cell.2020.02.052

21. Hikmet F, Méar L, Edvinsson Å, Micke P, Uhlén M, Lindskog C. The protein expression profile of ACE2 in human tissues. Mol Syst Biol. 2020;16(7):e9610. PMID: 32715618 doi: 10.15252/msb.20209610

22. TMPRSS2 Gene-GeneCards. TMPS2 Protein TMPS2 Antibody. Available at: https://www.genecards.org/cgi-bin/carddisp.pl?gene=TMPRSS2 [Accessed November 24, 2023]

23. Zhang H, Kang Z, Gong H, Xu D, Wang J, Li Z, et al. Digestive system is a potential route of COVID-19: An analysis of single-cell coexpression pattern of key proteins in viral entry process. Gut. 2020;69(6):1010–1018. doi: 10.1136/gutjnl-2020-320953

24. Byrne AW, McEvoy D, Collins AB, Hunt K, Casey M, Barber A, et al. Inferred duration of infectious period of SARS-CoV-2: Rapid scoping review and analysis of available evidence for asymptomatic and symptomatic COVID-19 cases. BMJ Open. 2020;10(8):e039856. PMID: 32759252 doi: 10.1136/bmjopen-2020-039856

25. Xu K, Cai H, Shen Y, Ni Q, Chen Y, Hu S, et al. Management of corona virus disease-19 (COVID-19): The Zhejiang experience. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2020;49(1):147–157. PMID: 32096367 doi: 10.3785/j.issn.1008-9292.2020.02.02

26. Zhang Y, Chen C, Song Y, Zhu S, Wang D, Zhang H, et al. Excretion of SARS-CoV-2through faecal specimens. Emerg Microbes Infect. 2020;9(1):2501–2508. PMID: 33161824 doi: 10.1080/22221751.2020.1844551

27. Zhang N, Gong Y, Meng F, Shi Y, Wang J, Mao P, et al. Comparative study on Virus Shedding Patterns in Nasopharyngeal and Fecal Specimens of COVID-19 Patients. Sci China Life Sci. 2021;64(3):486–488. PMID: 32778998 doi: 10.1007/s11427-020-1783-9

28. Effenberger M, Grabherr F, Mayr L, Schwaerzler J, Nairz M, Seifert M, et al. Faecal calprotectin indicates intestinal inflammation in COVID-19. Gut. 2020;69(8):1543–1544. PMID: 32312790 doi: 10.1136/gutjnl-2020-321388

29. Reuken PA, Wüst M, Löffler B, Bauer M, Stallmach A. Letter: SARS-CoV-2-induced gastrointestinal inflammation. Aliment Pharmacol Ther. 2020;52(11–12):1748–1749. PMID: 33205881 doi: 10.1111/apt.16087

30. Cardinale V, Capurso G, Ianiro G, Ianiro A, Ianiro PG, Ianiro D, et al. Intestinal Permeability Changes with Bacterial Translocation as Key Events Modulating Systemic Host Immune Response to SARS-Cov-2: A Working Hypothesis. Dig Liver Dis. 2020;52(12):1383–1389. PMID: 33023827 doi: 10.1016/j.dld.2020.09.009

31. Marazzato M, Ceccarelli G, d’Ettorre G. Dysbiosis in SARS-CoV-2 Infected Patients. Gastroenterology. 2020;160(6):2195. PMID: 33387514 doi: 10.1053/j.gastro.2020.12.056

32. Mainous MR, Tso P, Berg RD, Deitch EA. Studies of the Route, Magnitude, and Time Course of Bacterial Translocation in a Model of Systemic Inflammation. Arch Surg. 1991;126(1):33–37. PMID: 1824677 doi: 10.1001/archsurg.1991.01410250037005

33. Oliva A, Miele MC, Di Timoteo F, De Angelis M, Mauro V, Aronica R, et al. Persistent systemic microbial translocation and intestinal damage during coronavirus disease-19. Front Immunol. 2021;12:2810. PMID: 34335624 doi: 10.3389/fimmu.2021.708149

34. Prasad R, Patton MJ, Floyd JL Vieira CP, Fortmann S, DuPont M, et al. Plasma microbiome in COVID-19 subjects: An indicator of gut barrier defects and dysbiosis. BioRxiv 2021. Available at: https://www.biorxiv.org/content/10.1101/2021.04.06.438634v1 [Accessed November 24, 2023].

35. Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gevers D, Raes J, et al. Microbial co-occurrence relationships in the human microbiome. PLoS Comput Biol. 2012;8(7):e1002606. PMID: 22807668 doi: 10.1371/journal.pcbi.1002606

36. Belkaid Y, Harrison OJ. Homeostatic Immunity and the Microbiota. Immunity. 2017;46(4):562–576. PMID: 28423337 doi: 10.1016/j.immuni.2017.04.008

37. Одум Ю. Экология : в 2 частях. Москва: Мир; 1986. Ч. 2.

38. Rokkas T. Gastrointestinal involvement in COVID-19 : A systematic review and meta-analysis. Ann Gastroenterol. 2020;33(4):355–365. PMID: 32624655 doi: 10.20524/aog.2020.0506

39. Gu S, Chen Y, Wu Z, Chen Y, Gao H, Lv L, et al. Alterations of the gut microbiota inpatients with coronavirus disease 2019 or H1N1 influenza. Clin Infect Dis. 2020;71(10):2669–2678. PMID: 32497191 doi: 10.1093/cid/ciaa709

40. Ren Z, Wang H, Cui G, Lu H, Wang L, Luo H, et al. Alterations in the human oral and gut microbiomes and lipidomics in COVID-19. Gut. 2021;70(7):1253–1265. PMID: 33789966 doi: 10.1136/gutjnl-2020-323826

41. Haiminen N, Utro F, Seabolt E, Parida L. Functional profiling of COVID-19 respiratory tract microbiomes. Sci Rep. 2021;11(1):6433. PMID: 33742096 doi: 10.1038/s41598-021-85750-0

42. Keely S, Talley NJ, Hansbro PM. Pulmonary-intestinal cross-talk in mucosal inflammatory disease. Mucosal Immunol. 2012;5(1):7–18. PMID: 22089028 doi: 10.1038/mi.2011.55

43. Dumas A, Bernard L, Poquet Y, Lugo G, Neyrolles O. The role of the lung microbiota and the gut-lung axis in respiratory infectious diseases. Cell Microbiol. 2018;20(12):e12966. PMID: 30329198 doi: 10.1111/cmi.12966

44. Dhar D, Mohanty A. Gut microbiota and Covid-19 possible link and implications. Virus Res. 2020;285:198018. PMID: 32430279 doi: 10.1016/j.virusres.2020.198018

45. Baud D, Dimopoulou Agri V, Gibson GR, Reid G, Giannoni E. Using probiotics to flatten the curve of coronavirus disease COVID-2019 pandemic. Front Public Health. 2020;8:186. PMID: 32574290 doi: 10.3389/fpubh.2020.00186

46. Ebrahimi KH. SARS-CoV-2 spike glycoprotein-binding proteins expressed by upper respiratory tract bacteria may prevent severe viral infection. FEBS Lett. 2020;594(11):1651–1660. PMID: 32449939 doi: 10.1002/1873-3468.13845

47. Gou W, Fu Y, Yue L, Chen G-D, Cai X, Shuai M, et al. Gut microbiota, inflammation and molecular signatures of host response to infection. J Genet Genom. 2021;48(9):792–802. PMID: 34257044 doi: 10.1016/j.jgg.2021.04.002

48. Zuo T, Zhan H, Zhang F, Liu Q, Tso EY, Lui GC, et al. Alterations in fecal fungal microbiome of patients with covid-19 during time of hospitalization until discharge. Gastroenterology. 2020;159(4):1302–1310. PMID: 32598884 doi: 10.1053/j.gastro.2020.06.048

49. Vos Paul, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey, et al. (eds.) Bergey’s Manual of Systematic Bacteriology: Volume 3: The Firmicutes. New York, NY: William B. Whitman, Springer; 2011.

50. Liu X, Mao B, Gu J, Wu J, Cui S, Wang, G, et al. Blautia-a new functional genus with potential probiotic properties? Gut Microbes. 2021;13(1):1–21. PMID: 33525961 doi: 10.1080/19490976.2021.1875796

51. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–180. PMID: 21508958 doi: 10.1038/nature09944

52. Eren AM, Sogin ML, Morrison HG, Vineis JH, Fisher JC, Newton RJ, et al. A single genus in the gut microbiome reflects host preference and specificity. ISME J. 2015;9(1):90–100. PMID: 24936765 doi: 10.1038/ismej.2014.97

53. Martínez I, Lattimer JM, Hubach KL, Case JA, Yang J, Weber CG, et al. Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J. 2013;7(2):269–280. PMID: 23038174 doi: 10.1038/ismej.2012.104

54. Sheridan PO, Martin JC, Lawley TD, Browne HP, Harris HMB, Bernalier-Donadille A, et al. Polysaccharide utilization loci and nutritional specialization in a dominant group of butyrate-producing human colonic Firmicutes. Microb Genom. 2016;2(2):e000043. PMID: 28348841 doi: 10.1099/mgen.0.000043

55. Plichta DR, Juncker AS, Bertalan M, Rettedal E, Gautier L, Varela E, et al. Transcriptional interactions suggest niche segregation among microorganisms in the human gut. Nat. Microbiol. 2016;1(11):16152. PMID: 27564131 doi: 10.1038/nmicrobiol.2016.152

56. Petersen C, Round JL. Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol. 2014;16(7):1024–1033. PMID: 24798552 doi: 10.1111/cmi.12308

57. Ticinesi A, Milani C, Lauretani F, Nouvenne A, Mancabelli L, Lugli GA, et al. Gut microbiota composition is associated with polypharmacy in elderly hospitalized patients. Sci Rep. 2017;7(1):11102. PMID: 28894183 doi: 10.1038/s41598-017-10734-y

58. Vich Vila A, Collij V, Sanna S, Sinha T, Imhann F, Bourgonje AR, et al. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat Commun. 2020;11(1):362. PMID: 31953381 doi: 10.1038/s41467-019-14177-z

59. Zeppa DS, Agostini D, Piccoli G, Stocchi V, Sestili P. Gut Microbiota Status in COVID-19: An Unrecognized Player? Front Cell Infect Microbiol. 2020;10:576551. PMID: 33324572 doi: 10.3389/fcimb.2020.576551

60. Qiu D, Xia Z, Deng J, Jiao X, Liu L, Li J. Glucorticoid-induced obesity individuals have distinct signatures of the gut microbiome. Biofactors. 2019;45(6):892–901. PMID: 31588658 doi: 10.1002/biof.1565

61. Hummel S, Veltman K, Cichon C, Sonnenborn U, Schmidt MA. Differential targeting of the E-Cadherin/β-Catenin complex by gram-positive probiotic lactobacilli improves epithelial barrier function. Appl Environ Microbiol. 2012;78(4):1140–1147. PMID: 22179242 doi: 10.1128/AEM.06983-11

62. Zelaya H, Alvarez S, Kitazawa H, Villena J. Respiratory antiviral immunity and immunobiotics: Beneficial effects on inflammation-coagulation interaction during influenza virus infection. Front Immunol. 2016;7:633. PMID: 28066442 doi: 10.3389/fimmu.2016.00633

63. d’Ettorre G, Ceccarelli G, Marazzato M, Campagna G, Pinacchio C, Alessandri F, et al. Challenges in the management of SARS-CoV2 infection: The role of oral bacteriotherapy as complementary therapeutic strategy to avoid the progression of COVID-19. Front Med. 2020;7:389. PMID: 32733907 doi: 10.3389/fmed.2020.00389

64. Ceccarelli G, Borrazzo C, Pinacchio C, Santinelli L, Innocenti GP, Cavallari EN, et al. Oral bacteriotherapy in patients with COVID-19: A retrospective cohort study. Front Nutr. 2021;7:613928. PMID: 33505983 doi: 10.3389/fnut.2020.613928


Рецензия

Для цитирования:


Евдокимова Н.В., Черненькая Т.В. Влияние SARS-CoV-2 на кишечник и его микробиом: что мы знаем и что хотели бы знать. Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь». 2023;12(4):658-666. https://doi.org/10.23934/2223-9022-2023-12-4-658-666

For citation:


Evdokimova N.V., Chernenkaya T.V. The Effect of SARS-CoV-2 on the Gut and Its Microbiome: What We Know and What We Would Like to Know. Russian Sklifosovsky Journal "Emergency Medical Care". 2023;12(4):658-666. https://doi.org/10.23934/2223-9022-2023-12-4-658-666

Просмотров: 411


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2223-9022 (Print)
ISSN 2541-8017 (Online)