COVID-19 and Cardiovascular System: Pathophysiology, Pathomorphology, Complications, Long-Term Prognosis
https://doi.org/10.23934/2223-9022-2021-10-1-14-26
Abstract
Like other respiratory viruses, COVID-19 has extrapulmonary manifestations. The effect of the virus leads to the cardiovascular system (CVS) damage in particular, which pathophysiological mechanisms are not fully understood. In this article we analyze modern ideas about COVID-19, consider possible
links of pathogenesis, make an attempt to systematize pathophysiological mechanisms of cardiovascular impairment and its complications, analyze the relation with cardiovascular comorbidity, describe pathomorphological features and discuss possible long-term prognosis. The information in this article can contribute to understanding the two-way interaction of cardiovascular diseases and the effects of COVID-19 in order to develop effective preventive measures and make the right decision in choosing therapeutic tactics for a patient.
About the Authors
S. S. PetrikovRussian Federation
Сorresponding Member of RAS, Doctor of Medical Sciences, Director
3 B. Sukharevskaya square, Moscow, 129090, Russian Federation
A. A. Ivannikov
Russian Federation
Cardiology Clinical Resident
3 B. Sukharevskaya square, Moscow, 129090, Russian Federation
M. K. Vasilchenko
Russian Federation
Cardiology Clinical Resident
3 B. Sukharevskaya square, Moscow, 129090, Russian Federation
A. N. Esaulenko
Russian Federation
Cardiology Clinical Resident
3 B. Sukharevskaya square, Moscow, 129090, Russian Federation
Kh. G. Alidzhanova
Russian Federation
Doctor of Medical Sciences, Senior Lecturer, Training Center
3 B. Sukharevskaya square, Moscow, 129090, Russian Federation
References
1. Larina VN, Golovko MG, Larin VG. Possible Effects of Coronavirus Infection (COVID-19) on the Cardiovascular System. Bulletin of RSMU. 2020;(2):5–13. https://doi.org/10.24075/vrgmu.2020.020 (in Russ.)
2. Vremennye metodicheskie rekomendatsii “Profilaktika, diagnostika i lechenie novoy koronavirusnoy infektsii (COVID-19)” 2020. Vers. 9 (26.10.2020). Available at: https://base.garant.ru/74810808/ [Accessed Jan 22, 2021]
3. To K-W, Hung IF-N, Ip JD, Chu AW-H, Chan WM, Tam AR, et al. COVID-19 re-infection by a phylogenetically distinct SARS-coronavirus-2 strain confirmed by whole genome sequencing. Clin infect dis. 2020; Aug 25; ciaa1275. PMID: 32840608 https://doi.org/10.1093/cid/ciaa1275 Online ahead of print.
4. Corman VM, Lienau J, Witzenrath M. Coronaviruses as the cause of respiratory infections. Der Internist. 2019;60(11):1136–1145. https://doi.org/10.1007/s00108-019-00671-5
5. Srivastava SP, Goodwin JE, Kanasaki K, Koya D. Inhibition of Angiotensin-Converting Enzyme Ameliorates Renal Fibrosis by Mitigating DPP-4 Level and Restoring Antifibrotic MicroRNAs. Genes. 2020;11(2):211. PMID: 32085655 https://doi.org/10.3390/genes11020211
6. Long B, Brady WJ, Koyfman A, Michael G. Cardiovascular complications in COVID-19. Am J Emerg Med. 38(7):1504–1507. PMID: 32317203 https://doi.org/10.1016/j.ajem.2020.04.048
7. Liu Y, Yang Y, Zhang C, Huang F, Wang F, Yuan J, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci. 2020;63(3):364–374. PMID: 32048163 https://doi.org/10.1007/s11427-020-1643-8
8. Holter JC, Pischke SE, de Boer E, Lind A, Jenum S, Holten AR, et al. Systemic complement activation is associated with respiratory failure in COVID-19 hospitalized patients. Proс Natl Acad Sci USA. 2020;117(40):25018–25025. PMID: 32943538 https://doi.org/10.1073/pnas.2010540117
9. Kluge KE, Langseth MS, Opstad TB, Pettersen AÅ, Arnesen H, Tønnessen T, et al. Complement Activation in Association with Markers of Neutrophil Extracellular Traps and Acute Myocardial Infarction in Stable Coronary Artery Disease. Mediators Inflamm. 2020;2020:5080743. PMID: 32308555 https://doi.org/10.1155/2020/5080743
10. Dhont S, Derom E, Braeckel EV, Depuydt P, Lambrecht BN, et al. The pathophysiology of ‘happy’hypoxemia in COVID-19. Respir Res. 2020;21(1):1–9. PMID: 32723327 https://doi.org/10.1186/s12931-020-01462-5
11. Archer SL, Sharp WW, Weir EK. Differentiating COVID-19 Pneumonia from Acute Respiratory Distress Syndrome (ARDS) and High Altitude Pulmonary Edema (HAPE): Therapeutic Implications. Circulation. 2020;142(2):101–104. PMID: 32369390 https://doi.org/10.1161/circulationaha.120.047915
12. Ericsson A, Arias C, Sawchenko PE. Evidence for an intramedullary prostaglandin-dependent mechanism in the activation of stress-related neuroendocrine circuitry by intravenous interleukin-1. J Neuroscie. 1997;17(18):7166–7179. PMID: 9278551 https://doi.org/10.1523/JNEUROSCI.17-18-07166.1997
13. Donina ZhA, Baranova EV, Aleksandrova NP. Influence of Inhibition of Cyclooxygenase Pathways on Hypoxic Resistance in Rats with Increased Levels of Interleukin-1. Russian Journal of Physiology. 2020;106(11):1400–1411. https://doi.org/10.31857/s0869813920110047
14. UR A, Verma K. Pulmonary Edema in COVID19 – A Neural Hypothesis. ACS Chem Neurosci. 2020;11(14):2048–2050. PMID: 32614178 https://doi.org/10.1021/acschemneuro.0c00370
15. Dweck MR, Bularga A, Hahn RT, Bing R, Lee KK, Chapman AR, et al. Global evaluation of echocardiography in patients with COVID-19. Eur Heart J Cardiovasc Imaging. 2020;21(9):949–958. PMID: 32556199 https://doi.org/10.1093/ehjci/jeaa178
16. Basso C, Leone O, Rizzo S, De Gaspari M, van der Wal AC, Aubry M-Ch, et al. Pathological features of COVID-19-associated myocardial injury: a multicentre cardiovascular pathology study. Eur Heart J. 2020;41(39):3827–3835. PMID: 32968776 https://doi.org/10.1093/eurheartj/ehaa664
17. Pagnesi M, Baldetti L, Beneduce A, Calvo F, Gramegna M, Pazzaneseet V, et al. Pulmonary hypertension and right ventricular involvement in hospitalised patients with COVID-19. Heart. 2020;106(17):1324–1331. PMID: 32675217 http://dx.doi.org/10.1136/heartjnl-2020-317355
18. Zamechnik TV, Rogova LN. Hypoxia as Starting Factor of Development of Endothelial Dysfunction and Inflammation of the Vascular Wall (Literature Review). Journal of New Medical Technologies. 2012;(2):393–394.
19. Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Baderet M, et al. The ACE2/angiotensin-(1–7)/MAS axis of the renin-angiotensin system: focus on angiotensin-(1–7). Physiol Rev. 2018;98(1):505–553. PMID: 29351514 https://doi.org/10.1152/physrev.00023.2016
20. Petrishchev NN, Khalepo OV, Vavilenkova YA, Vlasov TD. COVID-19 and vascular disorders (literature review). Regional blood circulation and microcirculation. 2020;19(3):90–98. (in Russ.) https://doi.org/10.24884/1682-6655-2020-19-3-90-98
21. Patel KP, Schultz HD. Angiotensin peptides and nitric oxide in cardiovascular disease. Antioxid Redox Signal. 2013;19(10):1121–1132. PMID: 22462736 https://doi.org/10.1089/ars.2012.4614
22. Vaughan DE. The renin-angiotensin system and fibrinolysis. Am J Cardiol. 1997;79(5):12–16. PMID: 9127616 https://doi.org/10.1016/S0002-9149(97)00124-0
23. Porzionato A, Emmi A, Barbon S, Boscolo-Berto R, Stecco C, Stocco E, et al. Sympathetic activation: a potential link between comorbidities and COVID-19. FEBS J. 2020;287(17):3681–3688. PMID: 32779891 https://doi.org/10.1111/febs.15481
24. Dendorfer A, Raasch W, Tempel K, Dominiak P. Interactions between the renin-angiotensin system (RAS) and the sympathetic system. Basic Res Cardiol. 1998;93(Suppl 2):024–029. PMID: 9833158 https://doi.org/10.1007/s003950050202
25. Reid IA. Interactions between ANG II, sympathetic nervous system, and baroreceptor reflexes in regulation of blood pressure. Am J Physiol. 1992;262(6Pt1):E763–E778. PMID: 1616014 https://doi.org/10.1152/ajpendo.1992.262.6.E763
26. Lupinskaya ZA. Endoteliy sosudov – osnovnoy regulyator mestnogo krovotoka. Herald of KRSU. 2003;3(7):107–114.
27. Pons S, Fodil S, Azoulay E, Zafrani L. The vascular endothelium: the cornerstone of organ dysfunction in severe SARS-CoV-2 infection. Crit Care. 2020;24(1):353. PMID: 32546188 https://doi.org/10.1186/s13054-020-03062-7
28. Gavriilaki E, Anyfanti P, Gavriilaki M, Lazaridis A, Douma S, Gkaliagkousi E. Endothelial Dysfunction in COVID-19: Lessons Learned from Coronaviruses. Curr Hypertens Rep. 2020;22(9):63. PMID: 32852642 https://doi.org/10.1007/s11906-020-01078-6
29. Collard CD, Vakeva A, Morrissey MA, Agah A, Rollins SA, Reenstra WR, et al. Complement activation after oxidative stress. Role of the lectin complement pathway. Am J Pathol. 2000;156(5):1549–1556. PMID: 10793066 https://doi.org/10.1016/S0002-9440(10)65026-2
30. Varga Z, Andreas JF, Peter S, Haberecker M, Rea A, Zinkernagel AS, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395(10234):1417–1418. PMID: 32325026 https://doi.org/10.1016/S0140-6736(20)30937-5
31. Iba T, Levy JH, Levi M, Thachil J. Coagulopathy in COVID-19. J Thromb Haemost. 2020;18(9):2103–2109. PMID: 32558075 https://doi.org/10.1111/jth.14975
32. Wichmann D, Sperhake J-P, Lütgehetmann M, Steurer S, Edler C, Heinemann A, et al. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Ann Intern Med. 2020;173(4):268–274. PMID: 32374815 https://doi.org/10.7326/M20-2003
33. Keragala CB, Draxler DF, McQuilten ZK, Medcalf RL. Haemostasis and innate immunity – a complementary relationship: a review of the intricate relationship between coagulation and complement pathways. Br J Haematol. 2018;180(6):782–798. PMID: 29265338 https://doi.org/10.1111/bjh.15062
34. Sauter RJ, Sauter M, Obrich M, Emschermann FN, Nording H, Patzelt J, et al. Anaphylatoxin receptor C3aR contributes to platelet function, thrombus formation and in vivo haemostasis. Thromb Haemost. 2019;119(1):179–182. PMID: 30597512 https://doi.org/10.1055/s-0038-1676349
35. Manne BK, Denorme F, Middleton EA, Portier I, Rowley JW, Stubben Ch, et al. Platelet Gene Expression and Function in COVID-19 Patients. Blood. 2020;136(11):1317–1329. PMID: 32573711 https://doi.org/10.1182/blood.2020007214
36. Kwaan HC. Coronavirus Disease 2019: The Role of the Fibrinolytic System from Transmission to Organ Injury and Sequelae. Semin Thromb Hemost. 2020;46(7):841–844. PMID: 32386428 https://doi.org/10.1055/s-0040-1709996
37. Wright FL, Vogler TO, Moore EE, Moore HB, Wohlauer MV, Urban S. Fibrinolysis Shutdown Correlates to Thromboembolic Events in Severe COVID-19 Infection. J Am Coll Surg. 2020;231(2):193–203. PMID: 32422349 https://doi.org/10.1016/j.jamcollsurg.2020.05.007
38. Costa IBSdaS, Bittar CS, Rizk SI, Filho AEdeA, Santos KAQ, Machado TIV, et al. The Heart and COVID-19: What Cardiologists Need to Know. Arq Bras Cardiol. 2020;114(5):805–816. PMID: 32401847 https://doi.org/10.36660/abc.20200279
39. Kunutsor SK, Laukkanen JA. Cardiovascular complications in COVID-19: A systematic review and meta-analysis. J Infect. 2020;81(2):e1319–e141. PMID: 32504747 https://doi.org/10.1016/j.jinf.2020.05.068
40. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. PMID: 31986264 https://doi.org/10.1016/S0140-6736(20)30183-5
41. Liu K, Fang YY, Deng Y, Liu W, Wang MF, Ma JP, et al. Clinical characteristics of novel coronavirus cases in tertiary hospitals in Hubei Province. Chin Med J. 2020;133(9):1025–1031. PMID: 32044814 https://doi.org/10.1097/CM9.0000000000000744
42. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet. 2020;8(4):420–422. https://doi.org/10.1016/S2213-2600(20)30076-X
43. Becker RC. Anticipating the long-term cardiovascular effects of COVID-19. J Thromb Thrombolysis. 2020;50(3):512–524. PMID: 32880795 https://doi.org/10.1007/s11239-020-02266-6
44. Guo T, Fan Y, Chen M, Wu X, Zhang L, He T , et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):811–818. PMID: 32219356 https://doi.org/10.1001/jamacardio.2020.1017
45. Corrales-Medina VF, Alvarez KN, Weissfeld LA, Angus DC, Chirinos JA, Chang CCH, et al. Association between hospitalization for pneumonia and subsequent risk of cardiovascular disease. JAMA. 2015;313(3):264–274. PMID: 25602997 https://doi.org/10.1001/jama.2014.18229
46. Chen T, Wu D, Chen H, Yan W, Yang D, Chen G, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study. BMJ. 2020;368:m1091. PMID: 32217556 https://doi.org/10.1136/bmj.m1091
47. Atri D, Siddiqi HK, Lang JP, Nauffal V, Morrow DA, Bohula EA. COVID-19 for the Cardiologist. Basic virology, epidemiology, cardiac manifestations, and potential therapeutic strategies. JACC Basic Transl Sci. 2020;5(5):518–536. PMID: 32292848 https://doi.org/10.1016/j.jacbts.2020.04.002
48. Welt FGP, Shah PB, Aronow HD, Bortnick AE, Henry TD, Sherwood MW, et al. (2020). Catheterization Laboratory Considerations During the Coronavirus (COVID-19) Pandemic: From ACC’s Interventional Council and SCAI. J Am Coll Cardiol. 2020;75(18):2372–2375. PMID: 32199938 https://doi.org/10.1016/j.jacc.2020.03.021
49. Zhou F, Ting Yu, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. PMID: 32171076 https://doi.org/10.1016/S0140-6736(20)30566-3
50. Buzon J, Roignot O, Lemoine S, Perez P, Kimmoun A, Levy B, et al. Takotsubo cardiomyopathy triggered by influenza A virus. Intern Med. 2015;54(16):2017–2019. PMID: 26278294 https://doi.org/10.2169/internalmedicine.54.3606
51. Elfiky AA. Anti-HCV, nucleotide inhibitors, repurposing against COVID-19. Life Sci. 2020;248:117477. PMID: 32119961 https://doi.org/10.1016/j.lfs.2020.117477
52. Driggin E, Madhavan MV, Bikdeli B, Chuich T, Laracy J, Biondi-Zoccai G, et al. Cardiovascular considerations for patients, health care workers, and health systems during the COVID-19 pandemic. J Am Coll Cardiol. 2020;75(18):2352–2371. PMID: 32201335 https://doi.org/10.1016/j.jacc.2020.03.031
53. Arachchillage DRJ, Laffan M. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(5):1233–1234. PMID: 32291954 https://doi.org/10.1111/jth.14768
54. Bermejo-Martin JF, Almansa R, Torres A, González-Rivera M, Kelvin DJ. COVID-19 as a cardiovascular disease: the potential role of chronic endothelial dysfunction. Cardiovasc Res. 2020;116(10):e132–e133. PMID: 32420587 https://doi.org/10.1093/cvr/cvaa140
55. Polozova EI, Sorokina NN. Cardiorenal Continuum in Metabolic Syndrome. Modern problems of science and education. 2019;(2). (in Russ.) Available at: https://science-education.ru/ru/article/view?id=28650 [Accessed Jan 22, 2021].
56. Kobalava ZD, Moiseev VS. Cardio-reno-metabolic interaction concept in modern preventive cardiology. Cardiovascular Therapy and Prevention. 2008;7(4):4–7. (in Russ.)
57. Glybochko P, Fomin V, Avdeev S, Moiseev S, Yavorovskiy A, Brovko M, et al. Clinical characteristics of 1007 intensive care unit patients with SARS-CoV-2 pneumonia. Сlinical Pharmacology and Therapy. 2020;29(2):21–29. (in Russ.) https://doi.org/10.32756/0869- 5490-2020-2-21-29
58. Sommerstein R, Gräni C. Preventing a covid-19 pandemic: ACE inhibitors as a potential risk factor for fatal Covid-19. Br Med J. 2020;368:m810; https://doi.org/10.1136/bmj.m810
59. Kuster GM, Pfister O, Burkard T, Zhou Q, Twerenbold R, Haaf P, et al. SARS-CoV2: should inhibitors of the renin-angiotensin system be withdrawn in patients with COVID-19? Eur Heart J. 2020;41(19):1801–1803. PMID: 32196087 https://doi.org/ 10.1093/eurheartj/ehaa235
60. Korostovtseva LS, Rotar OP, Konradi AO. COVID-19: what are the risks in hypertensive patients? Arterial’naya Gipertenziya (Arterial Hypertension). 2020;26(2):124–132. (in Russ.) https://doi.org/10.18705/1607-419X-2020-26-2-124-132
61. Konradi AO, Nedoshivin AO. Angiotensin II and COVID-19. Secrets of interactions. Russian Journal of Cardiology. 2020;25(4):3861. (in Russ.) https://doi.org/10.15829/1560-4071-2020-3861
62. Zabozlaev FG, Kravchenko EV, Gallyamova AR, Letunovsky NN. Pulmonary pathology of the new coronavirus disease (COVID-19). The preliminary analysis of post-mortem findings. Journal of Clinical Practice. 2020;11(2):21–37. https://doi.org/10.17816/clinpract34849
63. Aghagoli G, Marin BG, Nicole J , Chaves-Sell F, Asaad WF, Murphy SA. Neurological involvement in COVID-19 and potential mechanisms: A review. Neurocrit Care. 2020; Jul 13; 1–10. PMID: 32661794 https://doi.org/10.1007/s12028-020-01049-4
64. Schurink B, Roos E, Radonic T, Barbe E, Bouman CSC, de Boer HH, et al. Viral presence and immunopathology in patients with lethal COVID-19: a prospective autopsy cohort study. Lancet Microbe. 2020;1(7):e290–e299. PMID: 33015653 https://doi.org/10.1016/S2666-5247(20)30144-0
65. Paniz-Mondolfi A, Bryce C, Grimes Z, Gordon RE, Reidy J, Lednicky J, et al. Central nervous system involvement by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J Med Virol. 2020;92(7):699–702. PMID: 32314810 https://doi.org/10.1002/jmv.25915
66. von Weyhern CH, Kaufmann I, Neff F, Kremer M. Early evidence of pronounced brain involvement in fatal COVID-19 outcomes. Lancet. 2020;395(10241):e109. PMID: 32505222 https://doi.org/10.1016/S0140-6736(20)31282-4
67. Maise Aniello, Manetti AC, La Russa R, Di Paolo M, Turillazzi E, Paola Frati, et al. Autopsy findings in COVID-19-related deaths: a literature review. Forensic Sci Med Pathol. 2020;Oct 7:1–18. PMID: 33026628 https://doi.org/10.1007/s12024-020-00310-8
68. Bösmüller H , Traxler S, Bitzer M, Häberle H, Raiser W, Nann D, et al. The evolution of pulmonary pathology in fatal COVID-19 disease: an autopsy study with clinical correlation. Virchows Archiv. 2020;477(3):349–357. PMID: 32607684 https://doi.org/10.1007/s00428-020-02881-x
69. Magro C, Mulvey JJ, Berlin D, Nuovo G, Salvatore S, Harp J, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res. 2020;220:1–13. PMID: 32299776 https://doi.org/10.1016/j.trsl.2020.04.007
70. Nienhold R, Ciani Y, Koelzer VH, Tzankov A, Haslbauer JD, Menter T, et al. Two distinct immunopathological profiles in autopsy lungs of COVID-19. Nat commun. 2020;11(1):1–13. https://doi.org/10.1038/s41467-020-18854-2
71. Lindner D, Fitzek A, Bräuninger H, Aleshcheva G, Edler C, Meissner K, et al. Association of cardiac infection with SARS-CoV-2 in confirmed COVID-19 autopsy cases. JAMA Сardiol. 2020;5(11):1281–1285. PMID: 32730555 https://doi.org/10.1001/jamacardio.2020.3551
72. Freaney PM, Shah SJ, Khan SS. COVID-19 and Heart Failure with Preserved Ejection Fraction. JAMA. 2020;324(15):1499–1500. PMID: 33001179 https://doi.org/10.1001/jama.2020.17445
73. Nishiga M, Wang DW, Han Y, Lewis DB, Wu JC. COVID-19 and cardiovascular disease: from basic mechanisms to clinical perspectives. Nat Rev Cardiol. 2020;17(9):543–558. PMID: 32690910 https://doi.org/10.1038/s41569-020-0413-9
74. Oudit GY, Kassiri Z, Jiang C, Liu PP, Poutanen SM, Penninger JM, et al. SARS – coronavirus modulation of myocardial ACE2 expression and inflammation in patients with SARS. Eur J Clin Invest. 2009;39(7):618–625. PMID: 19453650 https://doi.org/10.1111/j.1365-2362.2009.02153.x
75. Su H, Yang M, Wan Ch, Yi L-X, Tang F, Zhu H-Y, et al. Renal histopathological analysis of 26 postmortem findings of patients with COVID-19 in China. Kidney Int. 2020;98(1):219–227. PMID: 32327202 https://doi.org/10.1016/j.kint.2020.04.003
76. Santoriello D, Khairallah P, Bomback AS, Xu K, Kudose S, Batal I, et al. Postmortem kidney pathology findings in patients with COVID-19. Am Soc Nephrol. 2020;31(9):2158–2167. PMID: 32727719 https://doi.org/10.1681/asn.2020050744
77. Yelin D, Wirtheim Eytan, Vetter P, Kalil AC, Bruchfeld J, Runold M, et al. Long-term consequences of COVID-19: research needs. Lancet Infec Dis. 2020;20(10):1115–1117. PMID: 32888409 https://doi.org/10.1016/S1473-3099(20)30701-5
78. Mitrani RD, Dabas N, Goldberger JJ. COVID-19 cardiac injury: Implications for long-term surveillance and outcomes in survivors. Heart rhythm. 2020;17(11):1984–1990. PMID: 32599178 https://doi.org/10.1016/j.hrthm.2020.06.026
79. Del Rio C, Collins LF, Malani P. Long-term health consequences of COVID-19. JAMA. 2020;324(7):1723–1724. PMID: 33031513 https://doi.org/10.1001/jama.2020.19719
Review
For citations:
Petrikov S.S., Ivannikov A.A., Vasilchenko M.K., Esaulenko A.N., Alidzhanova Kh.G. COVID-19 and Cardiovascular System: Pathophysiology, Pathomorphology, Complications, Long-Term Prognosis. Russian Sklifosovsky Journal "Emergency Medical Care". 2021;10(1):14-26. https://doi.org/10.23934/2223-9022-2021-10-1-14-26