Preview

Russian Sklifosovsky Journal "Emergency Medical Care"

Advanced search

Effect of Xenon on the Phosphorylation of Glycogen Synthase Kinase 3β and Antioxidant Enzymes in Rat Brain

https://doi.org/10.23934/2223-9022-2020-9-4-564-572

Abstract

Relevance. The increase in the number of severe brain injuries due to stroke and traumatic brain injury determines the need to study and develop effective strategies for neuroprotection. The article highlights new mechanisms of the neuroprotective action of the inhalation anesthetic xenon based on the data of our own experimental studies.

Aim of study. To assess the effect of anesthesia with xenon at a concentration of 0.5 MAC (minimum alveolar concentration) on the phosphorylation of glycogen synthase kinase 3β (GSK-3β) and the content of antioxidant defense enzymes in the rat brain.

Material and methods. The effect of inhalation anesthesia with xenon on the phosphorylation of the GSK-3β enzyme in comparison with lithium chloride, as well as on the content of heme oxygenase, catalase, and Mn-superoxide dismutase in rat brain homogenates was studied by immunoblotting.

Results. The use of xenon at a concentration of 0.5 MAA causes an almost twofold increase in the content of the phosphorylated form of the GSK-3β enzyme in comparison with the control (p<0.05) and significantly increases the pool of antioxidant defense enzymes: heme oxygenase by 50% (p <0.05) and Mn-superoxide dismutase by 60% (p<0.05).

Conclusion. The conducted experimental study revealed new molecular mechanisms of action of the inhalation anesthetic xenon. The effect of xenon on the pool of enzymes involved in the protection of the brain from oxidative distress was found. The data obtained indicate the prospects for using xenon and require further research in this direction. The use of xenon at a concentration of 50 vol.% (0.5 MAA) for 30 minutes does not affect the content of the glycogen synthase-3β enzyme, at the same time causing an almost twofold increase in its phosphorylated form, the glycogen synthase-3β enzyme, and is accompanied by a significant increase the content of heme oxygenase, Mn-superoxide dismutase and a slight increase in the content of catalase in rat brain homogenates. Thus, the results of the study suggest that one of the possible mechanisms of the neuroprotective effect of xenon is the phosphorylation of glycogen synthase-3β, which prevents the opening of the mitochondrial pore, inhibiting the death of mitochondria-mediated apoptosis of neurons and increasing the level of antioxidant protection in them.

About the Authors

A. N. Kuzovlev
Organoprotection laboratory in critical conditions, Federal Scientific and Clinical Center of Reanimatology and Rehabilitation
Russian Federation

Artem N. Kuzovlev Doctor of Medical Sciences, Professor, Deputy Director — Head of the Research Institute of General Reanimatology V.A. Negovsky, ead of the Department of Anesthesiology and Reanimatology

25 b. 2 Petrovka St., Moscow 107031, Russian Federation



A. I. Shpichko
Organoprotection laboratory in critical conditions, Federal Scientific and Clinical Center of Reanimatology and Rehabilitation
Russian Federation

Andrey I. Shpichko Candidate of Medical Sciences, Senior Researcher

25 b. 2 Petrovka St., Moscow 107031, Russian Federation



I. A. Ryzhkov
Organoprotection laboratory in critical conditions, Federal Scientific and Clinical Center of Reanimatology and Rehabilitation
Russian Federation

Ivan A. Ryzhkov Candidate of Medical Sciences, Senior Researcher of the Laboratory of Experimental Research

25 b. 2 Petrovka St., Moscow 107031, Russian Federation



O. A. Grebenchikov
Organoprotection laboratory in critical conditions, Federal Scientific and Clinical Center of Reanimatology and Rehabilitation
Russian Federation

Oleg A. Grebenchikov Doctor of Medical Sciences, Chief Researcher

25 b. 2 Petrovka St., Moscow 107031, Russian Federation



A. K. Shabanov
Organoprotection laboratory in critical conditions, Federal Scientific and Clinical Center of Reanimatology and Rehabilitation; N.V. Sklifosovsky Research Institute for Emergency Medicine of the Moscow Health Department
Russian Federation

Aslan K. Shabanov Doctor of Medical Sciences, Chief Researcher of the Laboratory of Clinical Pathophysiology in Critical Conditions, Deputy Chief Physician for Anesthesiology and Reanimatology

25 b. 2 Petrovka St., Moscow 107031, Russian Federation

3 B. Sukharevskaya Sq., Moscow 129090, Russian Federation



Sh. Zh. Khusainov
Organoprotection laboratory in critical conditions, Federal Scientific and Clinical Center of Reanimatology and Rehabilitation; N.V. Sklifosovsky Research Institute for Emergency Medicine of the Moscow Health Department
Russian Federation
Shamil Z. Khusainov Doctor Anesthesiologist-resuscitator; post-graduate student

25 b. 2 Petrovka St., Moscow 107031, Russian Federation

3 B. Sukharevskaya Sq., Moscow 129090, Russian Federation



Z. I. Tsokolaeva
Organoprotection laboratory in critical conditions, Federal Scientific and Clinical Center of Reanimatology and Rehabilitation
Russian Federation

Zoya I. Tsokolaeva Candidate of Biological Sciences, Leading Researcher of the Laboratory of Experimental Research

25 b. 2 Petrovka St., Moscow 107031, Russian Federation



A. V. Lobanov
Research Institute of General Pathology and Pathophysiology
Russian Federation

Alexander V. Lobanov Senior Researcher

8 Baltiyskaya St., Moscow 125315, Russian Federation



References

1. Vilensky BS, Yakhno NN. The Problem of Cerebral Stroke: Its Contemporary State. Annals of the Russian Academy of Medical Sciences. 2006;(9–10):18–23. (In Russ.)

2. Shevchenko EV, Ramazanov GR, Petrikov SS. Сauses of Dizziness in Patients with Suspected Stroke. Russian Sklifosovsky Journal Emergency Medical Care. 2018;7(3):217–221. (In Russ.) https://doi.org/10.23934/2223-9022-2018-7-3-217-221

3. Piradov MA, Krylov VV, Belkin AA, Petrikov SS. Insul’ty. In: Gel’fand BR, Zabolotskikh IB. (eds.) Intensivnaya terapiya. Moscow: GEOTAR-Media Publ.; 2017.Ch.2:288–309. (In Russ.)

4. Krylov VV, Petrikov SS, Talypov AE, Puras YuV, Solodov AA, Levchenko OV, et al. Modern Principles of Surgery Severe Craniocerebral Trauma. Russian Sklifosovsky Journal Emergency Medical Care. 2013;(4):39–47. (In Russ.)

5. Hackenberg K, Unterberg A. Schädel-Hirn-Trauma. Nervenarzt. 2016;87(2):203–216. PMID: 26810405. https://doi.org/10.1007/s00115-015-0051-3

6. Vella MA, Crandall ML, Patel MB. Acute Management of Traumatic Brain Injury. Surg Clin North Am. 2017;97(5):1015–1030. PMID: 28958355. https://doi.org/10.1016/j.suc.2017.06.003

7. Shabanov AK, Kartavenko VI, Petrikov SS, Marutyan ZG, Rozumny PA, Chernenkaya TV, et al. Evere Multisystem Craniocerebral Injury: Features of the Clinical Course and Outcomes. Russian Sklifosovsky Journal Emergency Medical Care. 2017;6(4):324–330. (In Russ.) https://doi.org/10.23934/2223-9022-2017-6-4-324-330

8. Janowitz T, Menon DK. Exploring new routes for neuroprotective drug development in traumatic brain injury. Sci Transl Med. 2010;2(27):27rv1. PMID: 20393189. https://doi.org/10.1126/scitranslmed.3000330

9. Ostrova IV, Grebenchikov OA, Golubeva NV. Neuroprotective Effect of Lithium Chloride in Rat Model of Cardiac Arrest. General Reanimatology. 2019;15(3):73–82. (In Russ.) https://doi.org/10.15360/1813-9779-2019-3-73-82

10. Campos-Pires R, Koziakova M, Yonis A, Pau A, Macdonald W, Harris K, et al. Xenon Protects against Blast-Induced Traumatic Brain Injury in an In Vitro Model. J Neurotrauma. 2018;35(8):1037–1044. PMID: 29285980. https://doi.org/10.1089/neu.2017.5360

11. Lavaur J, Le Nogue D, Lemaire M, Pype J, Farjot G, Hirsch EC, et al. The noble gas xenon provides protection and trophic stimulation to midbrain dopamine neurons. J Neurochem. 2017;142(1):14–28. PMID: 28398653. https://doi.org/10.1111/jnc.14041

12. Miao YF, Peng T, Moody MR, Klegerman ME, Aronowski J, Grotta J, et al. Delivery of xenon-containing echogenic liposomes inhibits early brain injury following subarachnoid hemorrhage. Sci Rep. 2018;8(1):450. PMID: 29323183. https://doi.org/10.1038/s41598-017-18914-6

13. Yang YW, Wang YL, Lu JK, Klegerman ME, Aronowski J, Grotta J, et al. Delayed xenon post-conditioning mitigates spinal cord ischemia/ reperfusion injury in rabbits by regulating microglial activation and inflammatory factors. Neural Regen Res. 2018;13(3):510–517. PMID: 29623938. https://doi.org/10.4103/1673-5374.228757

14. Veldeman M, Coburn M, Rossaint R, Clusmann H, Nolte K, Kremer B, et al. Xenon Reduces Neuronal Hippocampal Damage and Alters the Pattern of Microglial Activation after Experimental Subarachnoid Hemorrhage: A Randomized Controlled Animal Trial. Front Neurol. 2017;8:511. PMID: 29021779. https://doi.org/10.3389/fneur.2017.00511

15. Grinvud N, Ernsho A. Khimiya elementov. In 2 vol., 3rd ed. Moscow: BINOM. Laboratoriya znaniy Publ.; 2015. Vol. 2:233. (In Russ.)

16. Lawrence JH, Loomis WF, Tobias CA, Turpin FH. Preliminary observations on the narcotic effect of xenon with a review of values for solubilities of gases in water and oils. J Physiol. 1946;105(3):197–204. https://doi.org/10.1113/jphysiol.1946.sp004164

17. Cullen SC, Gross EG. The anesthetic properties of xenon in animals and human beings, with additional observations on krypton. Science. 1951;113(2942):580–582. PMID: 14834873. https://doi.org/10.1126/science.113.2942.580

18. Burov NE, Potapov VN, Makeev GN. Ksenon v anesteziologii. Moscow: Puls Publ.; 2000. (In Russ.)

19. Wilhelm S, Ma D, Maze M, Franks NP. Effects of xenon on in vitro and in vivo models of neuronal injury. Anesthesiology. 2002;96(6):1485–1491. PMID: 12170064. https://doi.org/10.1097/00000542-200206000-00031

20. Homi HM, Yokoo N, Ma D, Warner DS, Franks NP, Maze M, et al. The neuroprotective effect of xenon administration during transient middle cerebral artery occlusion in mice. Anesthesiology. 2003;99(4):876–881. PMID: 14508320. https://doi.org/10.1097/00000542-200310000-00020

21. Banks P, Franks NP, Dickinson R. Competitive inhibition at the glycine site of the N-methyl-D-aspartate receptor mediates xenon neuroprotection against hypoxia-ischemia. Anesthesiology. 2010;112(3):614–622. PMID: 20124979. https://doi.org/10.1097/ALN.0b013e3181cea398

22. Franks NP, Dickinson R, de Sousa SL, Hall AS, Lieb WR. How does xenon produce anaesthesia? Nature. 1998;396(6709):324. PMID: 9845069. https://doi.org/10.1038/24525

23. Huang H, Liu S, Kornberg TB. Glutamate signaling at cytoneme synapses. Science. 2019;363(6430):948–955. PMID: 30819957. https://doi.org/10.1126/science.aat5053

24. Kaneko Y, Tuazon JP, Ji X, Borlongan CV. Pituitary Adenylate Cyclase Activating Polypeptide Elicits Neuroprotection Against Acute Ischemic Neuronal Cell Death Associated with NMDA Receptors. Cell Physiol Biochem. 2018;51(4):1982–1995. PMID: 30513524. https://doi.org/10.1159/000495722

25. Liu Y, Li AQ, Ma W, Gao YB, Deng LQ, Zhang C, et al. Limb Remote Ischemic Preconditioning Reduces Repeated Ketamine Exposure- Induced Adverse Effects in the Developing Brain of Rats. J Mol Neurosci. 2019;68(1):58–65. PMID: 30847723. https://doi.org/10.1007/s12031-019-01282-3

26. Andreasen SR, Lundbye CJ, Christensen TB, Thielsen KD, Schmitt- John T, Holm MM. Excitatory-inhibitory imbalance in the brain of the wobbler mouse model of amyotrophic lateral sclerosis substantiated by riluzole and diazepam. Neurosci Lett. 2017;658:85–90. PMID: 28823891. https://doi.org/10.1016/j.neulet.2017.08.033

27. Ladak AA, Enam SA, Ibrahim MT. A Review of the Molecular Mechanisms of Traumatic Brain Injury. World Neurosurg. 2019;131:126–132. PMID: 31301445. https://doi.org/10.1016/j.wneu.2019.07.039

28. Kim UJ, Lee BH, Lee KH. Neuroprotective effects of a protein tyrosine phosphatase inhibitor against hippocampal excitotoxic injury. Brain Res. 2019;1719:133–139. PMID: 31128098. https://doi.org/10.1016/j.brainres.2019.05.027

29. Bakthavachalam P, Shanmugam PST. Mitochondrial dysfunction – Silent killer in cerebral ischemia. J Neurol Sci. 2017;375:417–423. PMID: 28320180. https://doi.org/10.1016/j.jns.2017.02.043

30. Laitio R, Maze M. Xenon limits brain damage following cardiac arrest. ICU Management & Practice. 2018;8(3):192–195.

31. Wang H, Kumar A, Lamont RJ, Scott DA. GSK3β and the control of infectious bacterial diseases. Trends Microbiol. 2014;22(4):208–217. PMID: 24618402. https://doi.org/10.1016/j.tim.2014.01.009

32. Ko R, Lee SY. Glycogen synthase kinase 3β in Toll-like receptor signaling. BMB Rep. 2016;49(6):305–310. PMID: 26996345. https://doi.org/10.5483/BMBRep.2016.49.6.059

33. Parker PJ, Caudwell FB, Cohen P. Glycogen synthase from rabbit skeletal muscle; effect of insulin on the state of phosphorylation of the seven phosphoserine residues in vivo. Eur J Biochem. 1983;130(1):227–234. PMID: 6402364. https://doi.org/10.1111/j.1432-1033.1983.tb07140.x

34. Juhaszova M, Zorov DB, Yaniv Y. Role of glycogen synthase kinase-3β in cardioprotection. Circ Res. 2009;104(11):1240–1252. PMID: 19498210. https://doi.org/10.1161/CIRCRESAHA.109.19799650

35. Zuo Z. Are volatile anesthetics neuroprotective or neurotoxic? Med Gas Res. 2012;2(1):10. PMID: 22510328. https://doi.org/10.1186/2045-9912-2-10

36. Bantel C, Maze M, Trapp S. Neuronal preconditioning by inhalational anesthetics: evidence for the role of plasmalemmal adenosine triphosphate-sensitive potassium channels. Anesthesiology. 2009;110(5):986–995. PMID: 19352153. https://doi.org/10.1097/ALN.0b013e31819dadc735

37. Likhvantsev VV, Grebenchikov OA, Borisov KYu, Shaibakova VL, Shaposhnikov AA, Cherpakov RA, et al. The Mechanisms of Pharmacological Preconditioning of the Brain and the Comparative Efficacy of the Drugs — Direct- and Indirect-Acting Glycogen Synthase Kinase-3β Inhibitors: Experimental Study. General Reanimatology. 2012;8(6):37. (In Russ.) https://doi.org/10.15360/1813-9779-2012-6-37

38. Grebenchikov OA, Avrushchenko MSh, Borisov KYu, Il’’in YuV, Likhvantsev VV. Neyroprotektornye Effekty Sevoflurana na Modeli Total’’noy Ishemii-Reperfuzii. Clinical Pathophysiology. 2014;(2):57–64. (In Russ.)

39. Ostrova IV, Grebenchikov OA, Golubeva NV. Neuroprotective Effect of Lithium Chloride in Rat Model of Cardiac Arrest. General Reanimatology. 2019;15(3):73–82. (In Russ.) https://doi.org/10.15360/1813-9779-2019-3-73-82

40. Rojo AI, Sagarra MR,Cuadrado A. GSK-3beta down-regulates the transcription factor Nrf2 after oxidant damage: relevance to exposure of neuronal cells to oxidative stress. J Neurochem. 2008;105(1):192–202. PMID: 18005231. https://doi.org/10.1111/j.1471-4159.2007.05124.x

41. Jiang Y, Bao H, Ge Y, Tang W, Cheng D, Luo K, et al. Therapeutic targeting of GSK3β enhances the Nrf2 antioxidant response and confers hepatic cytoprotection in hepatitis C. Gut. 2015;64(1):168–179. PMID: 24811996. https://doi.org/10.1136/gutjnl-2013-30604359


Review

For citations:


Kuzovlev A.N., Shpichko A.I., Ryzhkov I.A., Grebenchikov O.A., Shabanov A.K., Khusainov Sh.Zh., Tsokolaeva Z.I., Lobanov A.V. Effect of Xenon on the Phosphorylation of Glycogen Synthase Kinase 3β and Antioxidant Enzymes in Rat Brain. Russian Sklifosovsky Journal "Emergency Medical Care". 2020;9(4):564-572. https://doi.org/10.23934/2223-9022-2020-9-4-564-572

Views: 971


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-9022 (Print)
ISSN 2541-8017 (Online)