Preview

Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь»

Расширенный поиск

Респираторная нейромиопатия как важный компонент полинейромиопатии критических состояний

https://doi.org/10.23934/2223-9022-2020-9-1-108-122

Полный текст:

Аннотация

РЕЗЮМЕ. В последние годы внимание неврологов, нейрохирургов и анестезиологов-реаниматологов привлекает новый симптомокомплекс PICS (Post Intensive Care Syndrome) (англ.), или ПИТ-синдром — синдром «После интенсивной терапии». Одним из наиболее тяжелых вариантов течения ПИТ- синдрома является полимионейропатия критических состояний (ПМКС). Полинейропатия (Critical illness polyneuropathies, или CIP) и миопатия (Critical illness myopathies, или CIМ) критических со- стояний являются общими осложнениями тяжелой системной воспалительной реакции и полиорганной дисфункции. Несколько синдромов мышечной слабости объединены под термином «слабость, приобретенная в отделении реанимации и интенсивной терапии (ОРИТ)» (Intensive care unit-acquired weakness, или ICUAW). Респираторная нейромиопатия является компонентом ПМКС, в котором на первое место выходит проблема дыхательной недостаточности, связанной с поражением, в первую очередь, нервно-мышечного аппарата внешнего дыхания. Клиническим последствием респираторной нейропатии является неудачное отлучение от искусственной вентиляции легких и длительное нахождение пациента в ОРИТ. Данный систематический обзор литературы представляет собой анализ публикаций, посвященных основным патогенетическим механизмам развития CIP и респираторной нейромиопатии, методам диагностики и новым терапевтическим подходам к лечению пациентов ОРИТ с респираторной нейромиопатией. Особое внимание об- ращено на проблему острого мышечного истощения, диагностику и коррекцию расстройств белково-энергетического обмена у пациентов с респираторной нейромиопатией.

Об авторах

Р. Т. Рахимов
Кафедра анестезиологии, реаниматологии, трансфузиологии и токсикологии, ООО «Клиника Института Мозга»
Россия
соискатель


И. Н. Лейдерман
Кафедра анестезиологии, реаниматологии, трансфузиологии и токсикологии, ООО «Клиника Института Мозга»; ФГБОУ ВО «Уральский государственный медицинский университет» МЗ РФ
Россия
Лейдерман Илья Наумович, доктор медицинских наук, профессор


А. А. Белкин
Кафедра анестезиологии, реаниматологии, трансфузиологии и токсикологии, ООО «Клиника Института Мозга»; ФГБОУ ВО «Уральский государственный медицинский университет» МЗ РФ
Россия
доктор медицинских наук, профессор, директор


Список литературы

1. Fan E, Cheek F, Chlan L, Gosselink R, Hart N, Herridge MS, et al. An Official American Thoracic Society Clinical Practice Guideline: The Diagnosis of Intensive Care Unit–acquired Weakness in Adults. Am J Respir Crit Care Med. 2014;190(12):1437–1446. PMID: 25496103 https://doi.org/10.1164/rccm.201411-2011ST

2. Белкин А.А., Алашеев А.М., Давыдова Н.С., Левит А.Л., Халин А.В. Обоснование реанимационной реабилитации в профилактике и лечении синдрома «После интенсивной терапии» (ПИТ-синдром). Вестник восстановительной медицины. 2014; (1): 37–43.

3. Marshall JC. Critical illness is an iatrogenic disorder. Crit Care Med. 2010;38(10 Suppl):S582–S589. PMID: 211644401 https://doi.org/10.1097/CCM.0b013e3181f2002a

4. Appleton RT, Kinsella J, Quasim T. The incidence of intensive care unit — acquired weakness syndromes: A systematic review. J Intensive Care Soc. 2015;16(2):126–136. PMID: 28979394 https://doi.org/10.1177/1751143714563016

5. Алашеев А.М., Белкин А.А., Давыдова Н.С. Полиневромиопатия критических состояний. Методическое пособие. Екатеринбург; 2013.

6. Friedrich O, Reid MB, Van den Berghe G, Vanhorebeek I, Hermans G, Rich MM, et al. The Sick and the Weak: Neuropathies/Myopathies in the Critically Ill. Physiol Rev. 2015;95(3):1025–1109. PMID: 26133937 https://doi.org/10.1152/physrev.00028.2014

7. Bolton CF. Neuromuscular manifestations of critical illness. Muscle Nerve. 2005;32(2):140–163. PMID: 15825186 https://doi.org/10.1002/mus.20304

8. Schweickert WD, Hall J. ICU-acquired weakness. Chest. 2007;131(5):1541–1549. PMID: 17494803 https://doi.org/10.1378/chest.06-2065

9. Latronico N, Shehu I, Seghelini E. Neuromuscular sequelae of critical illness. Curr Opin Crit Care. 2005;11(4):381–390. PMID: 16015120 https://doi.org/10.1097/01.ccx.0000168530.30702.3e

10. Friedrich O. Critical illness myopathy: what is happening? Curr Opin Clin Nutr Metab Care. 2006;9(4):403–409. PMID: 16778569 https://doi.org/10.1097/01.mco.0000232900.59168.a0

11. Белкин А.А., Алашеев А.М. Нейромышечные расстройства. В кн.: по Интенсивная терапия. Национальное руководство. Т. 1. Москва: ГЭОТАР-Медиа; 2009. с. 357–360.

12. Mehrholz J, Pohl M, Kugler J, Burridge J, Mückel S, Elsner B. Physical rehabilitation for critical illness myopathy and neuropathy. Cochrane Database Syst Rev. 2015;(3):CD010942. PMID: 25737049 https://doi.org/10.1002/14651858.CD010942.pub2

13. Лейдерман И.Н., Белкин А.А, Рахимов Р.Т., Давыдова Н.С. Мета- болический контроль и нутритивная поддержка в реабилитации больных с ПИТ-синдромом. Consilium Medicum. 2016; 18(2–1): 48–52.

14. Latronico N, Fenzi F, Recupero D, Guarneri B, Tomelleri G, Tonin P, et al. Critical illness myopathy and neuropathy. Lancet. 1996;347:1579–1582. PMID: 8667865 https://doi.org/10.1016/s0140-6736(96)91074-0

15. Novak KR, Nardelli P, Cope TC, Filatov G, Glass JD, Khan J, et al. Inactivation of sodium channels underlies reversible neuropathy during critical illness in rats. J Clin Invest. 2009;119(5):1150–1158. PMID: 19425168 https://doi.org/10.1172/jci36570

16. Bednarik J, Vondracek P, Dusek L, Moravcova E, Cundrle I. Risk factors for critical illness polyneuromyopathy. J Neurol. 2005;252(3):343–351. PMID: 15791390 https://doi.org/10.1007/s00415-005-0654-x

17. Khan J, Harrison TB, Rich MM, Moss M. Early development of critical illness myopathy and neuropathy in patients with severe sepsis. Neurology. 2006;67(8):1421–1425. PMID: 17060568 https://doi.org/10.1212/01.wnl.0000239826.63523.8e

18. Latronico N, Bolton CF. Critical illness polyneuropathy and myopathy: a major cause of muscle weakness and paralysis. Lancet Neurol. 2011;10(10): 931–941. PMID: 21939902 https://doi.org/10.1016/S1474-4422(11)70178-8

19. Fredriksson K, Hammarqvist F, Strigard K, Hultenby K, Ljungqvist O, Wernerman J, et al. Derangements in mitochondrial metabolism in intercostal and leg muscle of critically ill patients with sepsisinduced multiple organ failure. Am J Physiol Endocrinol Metab. 2006;291(5):E1044–1050. PMID: 16803854 https://doi.org/10.1152/ajpendo.00218.2006

20. James JH, Luchette FA, McCarter FD, Fischer JE. Lactate is an unreliable predictor of tissue hypoxia in injury or sepsis. Lancet. 1999;354:505–508. PMID: 10465191 https://doi.org/ 10.1016/S0140-6736(98)91132-1.

21. Sair M, Etherington PJ, Curzen NP, Winlove CP, Evans TW. Tissue oxygenation and perfusion in endotoxemia. Am J Physiol Heart Circ Physiol. 1996;271(4Pt2):H1620–1625. PMID: 8897959 https://doi.org/10.1152/ajpheart.1996.271.4.H1620

22. Astiz M, Rackow EC, Weil MH, Schumer W. Early impairment of oxidative metabolism and energy production in severe sepsis. Circ Shock. 1988;26(3):311–320. PMID: 3208424

23. Hotchkiss RS, Rust RS, Dence CS, Wasserman TH, Song SK, Hwang DR, et al. Evaluation of the role of cellular hypoxia in sepsis by the hypoxic marker [18F]fluoromisonidazole. Am J Physiol Regul Integr Comp Physiol. 1991;261:R965–972. PMID: 1928443 https://doi.org/10.1152/ajpregu.1991.261.4.R965

24. Boekstegers P, Weidenhöfer S, Kapsner T, Werdan K. Skeletal muscle partial pressure of oxygen in patients with sepsis. Crit Care Med. 1994;22(4):640–650. PMID: 8143474 https://doi.org/10.1097/00003246-199404000-00021

25. Sair M, Etherington PJ, Winlove P, Evans TW. Tissue oxygenation and perfusion in patients with systemic sepsis. Crit Care Med. 2001;29(7):1343–1349. PMID: 11445683 https://doi.org/10.1097/00003246-200107000-00008

26. Fink MP. Cytopathic hypoxia: mitochondrial dysfunction as a mechanism contributing to organ dysfunction in sepsis. Crit Care Clin. 2001;17(1):219–237. PMID: 11219231 https://doi.org/10.1016/s0749-0704(05)70161-5

27. Callahan LA, Nethery D, Stofan D, DiMarco A, Supinski GS. Free radicalinduced contractile protein dysfunction in endotoxin-induced sepsis. Am J Respir Cell Mol Biol. 2001;24(2):210–217. PMID: 11159056 https://doi.org/10.1165/ajrcmb.24.2.4075

28. Supinski GS, Nethery D, Nosek TM, Callahan LA, Stofan D, Di Marco A. Endotoxin administration alters the force vs pCa relationship of skeletal muscle fibers. Am J Physiol Regul Integr Comp Physiol. 2000;278(4):R891–896. PMID: 10749776 https://doi.org/ 10.1152/ajpregu.2000.278.4.R891

29. Crouser ED, Julian MW, Huff JE, Struck J, Cook CH. Carbamoyl phosphate synthase- 1: a marker of mitochondrial damage and depletion in the liver during sepsis. Crit Care Med. 2006;34(9):2439–2446. PMID: 16791110 https://doi.org/10.1097/01.CCM.0000230240.02216.21

30. Haden DW, Suliman HB, Carraway MS, Welty-Wolf KE, Ali AS, Shitara H, et al. Mitochondrial biogenesis restores oxidative metabolism during Staphylococcus aureus sepsis. Am J Respir Crit Care Med. 2007;176:768–777. PMID: 17600279 https://doi.org/ 10.1164/rccm.200701-161OC

31. Suliman HB, Carraway MS, Welty-Wolf KE, Whorton AR, Piantadosi CA. Lipopolysaccharide stimulates mitochondrial biogenesis via activation of nuclear respiratory factor-1. J Biol Chem. 2003;278(42):41510–41518. PMID: 12902348 https://doi.org/ 10.1074/jbc.M304719200

32. Fredriksson K, Tjäder I, Keller P, Petrovic N, Ahlman B, Schéele C, et al. Dysregulation of mitochondrial dynamics and the muscle transcriptome in ICU patients suffering from sepsis induced multiple organ failure. PloS One. 2008;3(11):e3686. PMID: 18997871 https://doi.org/10.1371/journal.pone.0003686

33. Carré JE, Orban JC, Re L, Felsmann K, Iffert W, Bauer M, et al. Survival in critical illness is associated with early activation of mitochondrial biogenesis. Am J Respir Crit Care Med. 2010;182(6):745–751. PMID: 20538956 https://doi.org/10.1164/rccm.201003-0326OC

34. Vanhorebeek I, Gunst J, Derde S, Derese I, Boussemaere M, D’Hoore A, et al. Mitochondrial fusion, fission, and biogenesis in prolonged critically ill patients. J Clin Endocrinol Metab. 2012;97(1):E59–64. PMID: 22013100 https://doi.org/10.1210/jc.2011-1760

35. Tzika AA, Mintzopoulos D, Mindrinos M, Zhang J, Rahme LG, Tompkins RG. Microarray analysis suggests that burn injury results in mitochondrial dysfunction in human skeletal muscle. Int J Mol Med. 2009;24(3):387–392. PMID: 19639232 https://doi.org/10.3892/ijmm_00000244

36. Adhihetty PJ, O’Leary MFN, Chabi B, Wicks KL, Hood DA. Effect of denervation on mitochondrially mediated apoptosis in skeletal muscle. J Appl Physiol (1985). 2007;102(3):1143–1151. PMID: 17122379 https://doi.org/10.1152/japplphysiol.00768.2006

37. Wagatsuma A, Kotake N, Mabuchi K, Yamada S. Expression of nuclearencoded genes involved in mitochondrial biogenesis and dynamics in experimentally denervated muscle. J Physiol Biochem. 2011;67(3): 359–370. PMID: 21394548 https://doi.org/10.1007/s13105-011-0083-5

38. Mofarrahi M, Sigala I, Guo Y, Godin R, Davis EC, Petrof B, et al. Autophagy and skeletal muscles in sepsis. PLoS One. 2012;7(10): e47265. PMID: 23056618 https://doi.org/10.1371/journal.pone.0047265

39. Wagatsuma A, Kotake N, Yamada S. Muscle regeneration occurs to coincide with mitochondrial biogenesis. Mol Cell Biochem. 2011;349(1-2):139–147. PMID: 21110070 https://doi.org/10.1007/s11010-010-0668-2

40. Huang J, Klionsky DJ. Autophagy and human disease. Cell Cycle. 2007;6(15):1837–1849. PMID: 17671424 https://doi.org/10.4161/cc.6.15.4511

41. Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, et al. Impairment of starvationinduced and constitutive autophagy in Atg7- deficient mice. J Cell Biol. 2005;169(3): 425–434. PMID: 15866887 https://doi.org/10.1083/jcb.200412022

42. Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, et al. Autophagy is required to maintain muscle mass. Cell Metab. 2009;10(6):507–515. PMID: 19945408 https://doi.org/10.1016/j.cmet.2009.10.008

43. Derde S, Hermans G, Derese I, Guiza F, Hedstrom Y, Wouters PJ, et al. Muscle atrophy and preferential loss of myosin in prolonged critically ill patients. Crit Care Med. 2012;40(1):79–89. PMID: 21926599 https://doi.org/10.1097/CCM.0b013e31822d7c18

44. Vanhorebeek I, Gunst J, Derde S, Derese I, Boussemaere M, Guiza F, et al. Insufficient activation of autophagy allows cellular damage to accumulate in critically ill patients. J Clin Endocrinol Metab. 2011;96(4): E633–645. PMID: 21270330 https://doi.org/10.1210/jc.2010-2563

45. Gunst J, Derese I, Aertgeerts A, Ververs EJ, Wauters A, Van den Berghe G, et al. Insufficient autophagy contributes to mitochondrial dysfunction, organ failure, and adverse outcome in an animal model of critical illness. Crit Care Med. 2013;41(1):182–194. PMID: 23222264. https://doi.org/10.1097/CCM.0b013e3182676657

46. Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol. 2010;221(1):3–12. PMID: 20225336 https://doi.org/10.1002/path.2697

47. Derde S, Vanhorebeek I, Guiza F, Derese I, Gunst J, Fahrenkrog B, et al. Early parenteral nutrition evokes a phenotype of autophagy deficiency in liver and skeletal muscle of critically ill rabbits. Endocrinology. 2012;153(5):2267–2276. PMID: 22396453 https://doi.org/10.1210/en.2011-2068

48. Hermans G, Casaer MP, Clerckx B, Güiza F, Vanhullebusch T, Derde S, et al. Effect of tolerating macronutrient deficit on the development of intensive-care unit acquired weakness: a subanalysis of the EPaNic trial. Lancet Resp Med. 2013;1(8):621–629. PMID: 24461665 https://doi.org/10.1016/S2213-2600(13)70183-8

49. Casaer MP, Mesotten D, Hermans G, Wouters PJ, Schetz M, Meyfroidt G, et al. Early versus late parenteral nutrition in critically ill adults. N Engl J Med. 2011;365(6):506–517. PMID: 21714640 https://doi.org/10.1056/NEJMoa1102662

50. Carchman EH, Rao J, Loughran PA, Rosengart MR, Zuckerbraun BS. Heme oxygenase- 1-mediated autophagy protects against hepatocyte cell death and hepatic injury from infection/sepsis in mice. Hepatology. 2011;53(6):2053–2062. PMID: 21437926 https://doi.org/10.1002/hep.24324

51. Hsieh CH, Pai PY, Hsueh HW, Yuan SS, Hsieh YC. Complete induction of autophagy is essential for cardioprotection in sepsis. Ann Surg. 2011;253(6):1190–1200. PMID: 21412148 https://doi.org/10.1097/SLA.0b013e318214b67e

52. Puthucheary Z, Montgomery H, Moxham J, Harridge S, Hart N. Structure to function: muscle failure in critically ill patients. J Physiol. 2010;588(Pt 23):4641–4648. PMID: 20961998 https://doi.org/10.1113/jphysiol.2010.197632

53. Ali NA, O’Brien JM Jr, Hoffmann SP, Phillips G, Garland A, Finley JC, et al. Acquired weakness, handgrip strength, and mortality in critically ill patients. Am J Respir Crit Care Med. 2008;178(3):261–268. PMID: 18511703 https://doi.org/10.1164/rccm.200712-1829OC

54. Caporossi FS, Caporossi C, Borges Dock-Nascimento D, de Aguilar- Nascimento JE. Measurement of the thickness of the adductor pollicis muscle as a predictor of outcome in critically ill patients. Nutr Hosp. 2012;27(2):490–495. PMID: 22732973 https://doi.org/10.1590/S0212-16112012000200021

55. Jespersen JG, Nedergaard A, Reitelseder S, Mikkelsen UR, Dideriksen KJ, Agergaard J, et al. Activated protein synthesis and suppressed protein breakdown signaling in skeletal muscle of critically-ill patients. PLoS One. 2011;6(3): e18090. PMID: 21483870 https://doi.org/10.1371/journal.pone.0018090

56. Gosselink R, Bott J, Johnson M, Dean E, Nava S, Norrenberg M, et al. Physiotherapy for adult patients with critical illness: recommendations of the European Respiratory Society of Intensive Care Medicine Task Force on Physiotherapy for Critically Ill Patients. Intensive Care Med. 2008;34(7):1188–1199. PMID: 18283429 https://doi.org/10.1007/s00134-008-1026-7

57. Belkin A, Alasheev AM, Gulin G. A The frequency of the involving of phrenic nerve into the polyneuropathy of critical illness. J Neurol Anesthesiol. 2004;16(4):343. https://doi.org/10.1097/00008506-200410000-00054

58. Leijten FS, De Weerd AW, Poortvliet DC, De Ridder VA, Ulrich C, Harink-De Weerd JE. Critical illness polyneuropathy in multiple organ dysfunction syndrome and weaning from the ventilator. Intensive Care Med. 1996;22(9):856–861. PMID: 8905417 https://doi.org/10.1007/bf02044107

59. Андроге Г.Д., Тобин М. Д. Дыхательная недостаточность. Москва: Медицина; 2003.

60. Doorduin J, van Hees HW, van der Hoeven JG, et al. Monitoring of the respiratory muscles in the critically ill. Am J Respir Crit Care Med. 2013;187(1):20–27. PMID: 23103733 https://doi.org/10.1164/rccm.201206-1117CP

61. Heunks LM, Doorduin J, van der Hoeven JG. Monitoring and preventing diaphragm injury. Curr Opin Crit Care. 2015;21(1):34–41. PMID: 25546533 https://doi.org/10.1097/MCC.0000000000000168

62. Laghi F, Cattapan SE, Jubran A, Parthasarathy S, Warshawsky P, Choi YS, et al. Is weaning failure caused by low-frequency fatigue of the diaphragm? Am J Respir Crit Care Med. 2003;167(2):120–127. PMID: 12411288 https://doi.org/ 10.1164/rccm.200210-1246OC

63. Watson AC, Hughes PD, Louise Harris M, Hart N, Ware RJ, Wendon J, et al. Measurement of twitch transdiaphragmatic, esophageal, and endotracheal tube pressure with bilateral anterolateral magnetic phrenic nerve stimulation in patients in the intensive care unit. Crit Care Med. 2001;29(7):1325–1331. PMID: 11445679 https://doi.org/10.1097/00003246-200107000-00005

64. Demoule A, Jung B, Prodanovic H, Molinari N, Chanques G, Coirault C, et al. Diaphragm dysfunction on admission to the intensive care unit. Prevalence, risk factors, and prognostic impact-a prospective study. Am J Respir Crit Care Med. 2013;188(2):213–219. PMID: 23641946 https://doi.org/10.1164/rccm.201209-1668OC

65. Hermans G, Agten A, Testelmans D, Decramer M, Gayan-Ramirez G. Increased duration of mechanical ventilation is associated with decreased diaphragmatic force: a prospective observational study. Crit Care. 2010;14(9):R127. PMID: 20594319 https://doi.org/10.1186/cc9094

66. Dres M, Dube BP, Mayaux J, Delemazure J, Reuter D, Brochard L, et al. Coexistence and impact of limb muscle and diaphragm weakness at time of liberation from mechanical ventilation in medical intensive care unit patients. Am J Respir Crit Care Med. 2017;195(3):57–66. PMID: 27310484 https://doi.org/10.1164/rccm.201602-0367OC

67. Demoule A, Molinari N, Jung B, Prodanovic H, Chanques G, Matecki S, et al. Patterns of diaphragm function in critically ill patients receiving prolonged mechanical ventilation: a prospective longitudinal study. Ann Intensive Care. 2016;6(1):75. PMID: 27492005 https://doi.org/10.1186/s13613-016-0179-8

68. Jung B, Moury PH, Mahul M, de Jong A, Galia F, Prades A, et al. Diaphragmatic dysfunction in patients with ICU-acquired weakness and its impact on extubation failure. Intensive Care Med. 2016;42(5):853–861. PMID: 26572511 https://doi.org/10.1007/s00134-015-4125-2

69. Supinski GS, Callahan LA. Diaphragm weakness in mechanically ventilated critically ill patients. Crit Care. 2013;17(3):R120. PMID: 23786764 https://doi.org/10.1186/cc12792

70. Supinski GS, Westgate P, Callahan LA. Correlation of maximal inspiratory pressure to transdiaphragmatic twitch pressure in intensive care unit patients. Crit Care. 2016;20:77. PMID: 27036885 https://doi.org/10.1186/s13054-016-1247-z

71. Aubier M, Murciano D, Lecocguic Y, Viires N, Jacquens Y, Squara P, et al. Effect of hypophosphatemia on diaphragmatic contractility in patients with acute respiratory failure. N Engl J Med. 1985;313(7):420–424. PMID: 3860734 https://doi.org/10.1056/NEJM198508153130705

72. Martinez FJ, Bermudez-Gomez M, Celli BR. Hypothyroidism. A reversible cause of diaphragmatic dysfunction. Chest. 1989;96(5):1059–1063. PMID: 2805837 https://doi.org/10.1378/chest.96.5.1059

73. Powers SK, Shanely RA, Coombes JS, Koesterer TJ, McKenzie M, Van Gammeren D, et al. Mechanical ventilation results in progressive contractile dysfunction in the diaphragm. J Appl Physiol (1985). 2002;92(5):1851–1858. PMID: 11960933 https://doi.org/10.1152/japplphysiol.00881.2001

74. Petrof BJ, Hussain SN. Ventilator-induced diaphragmatic dysfunction: what have we learned? Curr Opin Crit Care. 2016;22(1):67–72. PMID: 26627540 https://doi.org/10.1097/MCC.0000000000000272

75. Knisely AS, Leal SM, Singer DB. Abnormalities of diaphragmatic muscle in neonates with ventilated lungs. J Pediatr. 1988;113(6):1074–1077. PMID: 3142983 https://doi.org/10.1016/s0022-3476(88)80585-7

76. Picard M, Jung B, Liang F, Azuelos I, Hussain S, Goldberg P, et al. Mitochondrial dysfunction and lipid accumulation in the human diaphragm during mechanical ventilation. Am J Respir Crit Care Med. 2012;186(11):1140–1149. PMID: 23024021 https://doi.org/10.1164/rccm.201206-0982OC

77. Hussain SN, Cornachione AS, Guichon C, Al Khunaizi A, Leite Fde S, Petrof BJ, et al. Prolonged controlled mechanical ventilation in humans triggers myofibrillar contractile dysfunction and myofilament protein loss in the diaphragm. Thorax. 2016;71(5):436–445. PMID: 27033022 https://doi.org/10.1136/thoraxjnl-2015-207559

78. Picard M, Azuelos I, Jung B, Giordano C, Matecki S, Hussain S, et al. Mechanical ventilation triggers abnormal mitochondrial dynamics and morphology in the diaphragm. J Appl Physiol (1985). 2015;118(9):1161–1171. PMID: 25767033 https://doi.org/10.1152/japplphysiol.00873.2014 79. Tang H, Smith IJ, Hussain SN, Goldberg P, Lee M, Sugiarto S, et al. The JAK-STAT pathway is critical in ventilator-induced diaphragm dysfunction. Mol Med. 2015;20:579–589. PMID: 25286450 https://doi.org/10.2119/molmed.2014.00049

79. Matecki S, Dridi H, Jung B, Saint N, Reiken SR, Scheuermann V, et al. Leaky ryanodine receptors contribute to diaphragmatic weakness during mechanical ventilation. Proc Natl Acad Sci U S A. 2016;113(32):9069–9074. PMID: 27457930 https://doi.org/10.1073/pnas.1609707113

80. Nelson WB, Smuder AJ, Hudson MB, Talbert EE, Powers SK. Crosstalk between the calpain and caspase-3 proteolytic systems in the diaphragm during prolonged mechanical ventilation. Crit Care Med. 2012;40(6):1857–1863. PMID: 22487998 https://doi.org/10.1097/CCM.0b013e318246bb5d

81. Hussain SN, Mofarrahi M, Sigala I, Kim HC, Vassilakopoulos T, Maltais F, et al. Mechanical ventilation induced diaphragm disuse in humans triggers autophagy. Am J Respir Crit Care Med. 2010;182(11):1377–1386. PMID: 20639440 https://doi.org/10.1164/rccm.201002-0234OC

82. Gayan-Ramirez G, Testelmans D, Maes K, Rácz GZ, Cadot P, Zádor E, et al. Intermittent spontaneous breathing protects the rat diaphragm from mechanical ventilation effects. Crit Care Med. 2005;33(12):2804–2809. PMID: 16352963 https://doi.org/10.1097/01.ccm.0000191250.32988.a3

83. Sassoon CS, Zhu E, Caiozzo VJ. Assist-control mechanical ventilation attenuates ventilator-induced diaphragmatic dysfunction. Am J Respir Crit Care Med. 2004;170(6):626–632. PMID: 15201132 https://doi.org/10.1164/rccm.200401-042OC

84. Thomas D, Maes K, Agten A, Heunks L, Dekhuijzen R, Decramer M, et al. Time course of diaphragm function recovery after controlled mechanical ventilation in rats. J Appl Physiol (1985). 2013;115(6):775–784. PMID: 23845980 https://doi.org/10.1152/japplphysiol.00302.2012

85. Callahan LA, Supinski GS. Rapid and complete recovery in ventilatorinduced diaphragm weakness—problem solved? J Appl Physiol (1985). 2013;115(6):773–774. PMID: 23869069 https://doi.org/10.1152/japplphysiol.00831.2013

86. Supinski GS, Alimov AP, Wang L, Song XH, Callahan LA. Calciumdependent phospholipase A2 modulates infection-induced diaphragm dysfunction. Am J Physiol Lung Cell Mol Physiol. 2016;310(10): L975–984. PMID: 26968769 https://doi.org/10.1152/ajplung.00312.2015

87. Supinski GS, Ji XY, Callahan LA. p38 mitogen-activated protein kinase modulates endotoxin-induced diaphragm caspase activation. Am J Respir Cell Mol Biol. 2010;43(1):121–127. PMID: 19717815 https://doi.org/10.1165/rcmb.2008-0395OC

88. Supinski GS, Wang L, Song XH, Moylan JS, Callahan LA. Muscle-specific calpastatin overexpression prevents diaphragm weakness in cecal ligation puncture-induced sepsis. J Appl Physiol (1985). 2014;117(8):921–929. PMID: 25170071 https://doi.org/10.1152/japplphysiol.00975.2013

89. Supinski GS, Alimov AP, Wang L, Song XH, Callahan LA. Neutral sphingomyelinase 2 is required for cytokine-induced skeletal muscle calpain activation. Am J Physiol Lung Cell Mol Physiol. 2015;309(6):L614–624. PMID: 26138644 https://doi.org/10.1152/ajplung.00141.2015

90. Callahan LA, Nethery D, Stofan D, DiMarco A, Supinski G. Free radicalinduced contractile protein dysfunction in endotoxin-induced sepsis. Am J Respir Cell Mol Biol. 2001;24(2):210–217. PMID: 11159056 https://doi.org/10.1165/ajrcmb.24.2.4075

91. Tobin MJ, Laghi F, Jubran A. Ventilatory failure, ventilator support,and ventilator weaning. Compr Physiol. 2012;2(4):2871–2921. PMID: 23720268 https://doi.org/10.1002/cphy.c110030

92. Laghi F, Tobin MJ. Disorders of the respiratory muscles. Am J Respir Crit Care Med. 2003;168(1):10–48. PMID: 12826594 https://doi.org/10.1164/rccm.2206020

93. Yang KL, Tobin MJ. A prospective study of indexes predicting the outcome of trials of weaning from mechanical ventilation. N Engl J Med. 1991;324(21):1445–1450. PMID: 2023603 https://doi.org/10.1056/NEJM199105233242101

94. Shaikh H, Morales D, Laghi F. Weaning from mechanical ventilation. Semin Respir Crit Care Med. 2014;35(4):451–468. PMID: 25141162 https://doi.org/10.1055/s-0034-1381953

95. Rosenow EC 3rd, Engel AG. Acid maltase deficiency in adults presenting as respiratory failure. Am J Med. 1978;64(3):485–491. PMID: 345804 https://doi.org/10.1016/0002-9343(78)90235-8

96. McCool FD, Tzelepis GE. Dysfunction of the diaphragm. N Engl J Med. 2012;366(10):932–942. PMID: 22397655 https://doi.org/10.1056/NEJMra1007236

97. van Doorn PA, Ruts L, Jacobs BC. Clinical features, pathogenesis, and treatment of Guillain-Barre syndrome. Lancet Neurol. 2008;7(10):939–950. PMID: 18848313 https://doi.org/10.1016/S1474-4422(08)70215-1

98. Mellies U, Lofaso F. Pompe disease: a neuromuscular disease with respiratory muscle involvement. Respir Med. 2009;103(4):477–484. PMID: 19131232 https://doi.org/10.1016/j.rmed.2008.12.009

99. Tillquist M, Kutsogiannis DJ, Wischmeyer PE, Kummerlen C, Leung R, Stollery D, et al. Bedside ultrasound is a practical and reliable measurement tool for assessing quadriceps muscle layer thickness. JPEN J Parenter Enteral Nutr. 2014;38(7):886–890. PMID: 23980134 https://doi.org/10.1177/0148607113501327

100. Sarwal A, Walker FO, Cartwright MS. Neuromuscular ultrasound for evaluation of the diaphragm. Muscle Nerve. 2013;47(3):319–329. PMID: 23382111 https://doi.org/10.1002/mus.23671

101. Gerscovich EO, Cronan M, McGahan JP, Jain K, Jones CD, McDonald C. Ultrasonographic evaluation of diaphragmatic motion. J Ultrasound Med. 2001;20(6):597–604. PMID: 11400933 https://doi.org/10.7863/jum.2001.20.6.597

102. Zambon M, Greco M, Bocchino S, Cabrini L, Beccaria PF, Zangrillo A. Assessment of diaphragmatic dysfunction in the critically ill patient with ultrasound: a systematic review. Intensive Care Med. 2017;43(1):29–38. PMID: 27620292 https://doi.org/10.1007/s00134-016-4524-z

103. Umbrello M, Formenti P. Ultrasonographic assessment of diaphragm function in critically ill subjects. Respir Care. 2016;61(4):542–555. PMID: 26814218 https://doi.org/10.4187/respcare.04412

104. Umbrello M, Formenti P, Longhi D, Galimberti A, Piva I, Pezzi A, et al. Diaphragm ultrasound as indicator of respiratory effort in critically ill patients undergoing assisted mechanical ventilation: a pilot clinical study. Crit Care. 2015;19:161. PMID: 25886857 https://doi.org/10.1186/s13054-015-0894-9

105. Matamis D, Soilemezi E, Tsagourias M, Akoumianaki E, Dimassi S, Boroli F, et al. Sonographic evaluation of the diaphragm in critically ill patients. Technique and clinical applications. Intensive Care Med. 2013;39(5):801–810. PMID: 23344830 https://doi.org/10.1007/s00134-013-2823-1

106. Boussuges A, Gole Y, Blanc P. Diaphragmatic motion studied by mmode ultrasonography: methods, reproducibility, and normal values. Chest. 2009;135(2):391–400. PMID: 19017880 https://doi.org/10.1378/chest.08-1541

107. Goligher EC, Fan E, Herridge MS, Murray A, Vorona S, Brace D, et al. Evolution of diaphragm thickness during mechanical ventilation. Impact of inspiratory effort. Am J Respir Crit Care Med. 2015;192(9):1080–1088. PMID: 26167730 https://doi.org/10.1164/rccm.201503-0620OC

108. Goligher EC, Laghi F, Detsky ME, Farias P, Murray A, Brace D, et al. Measuring diaphragm thickness with ultrasound in mechanically ventilated patients: feasibility, reproducibility and validity. Intensive Care Med. 2015;41(4):734. PMID: 25749574 https://doi.org/10.1007/s00134-015-3724-2

109. Sarwal A, Parry SM, Berry MJ, Hsu FC, Lewis MT, Justus NW, et al. Interobserver reliability of quantitative muscle sonographic analysis in the critically ill population. J Ultrasound Med. 2015;34(7):1191–1200. PMID: 26112621 https://doi.org/10.7863/ultra.34.7.1191

110. Zambon M, Beccaria P, Matsuno J, Gemma M, Frati E, Colombo S, et al. Mechanical ventilation and diaphragmatic atrophy in critically ill patients: an ultrasound study. Crit Care Med. 2016;44:1347–1352. PMID: 26992064 https://doi.org/10.1097/CCM.0000000000001657

111. Blumhof S, Wheeler D, Thomas K, McCool FD, Mora J. Change in diaphragmatic thickness during the respiratory cycle predicts extubation success atvarious levels of pressure support ventilation. Lung. 2016;194(4):519–525. PMID: 27422706 https://doi.org/10.1007/s00408-016-9911-2

112. Laghi F, Sassoon CS. Weakness in the critically ill: “captain of the men of death” or sign of disease severity? Am J Respir Crit Care Med. 2017;195(1):7–9. PMID: 28035864 https://doi.org/10.1164/rccm.201606-1318ED

113. Demoule A, Morelot-Panzini C, Prodanovic H, Cracco C, Mayaux J, Duguet A, et al. Identification of prolonged phrenic nerve conduction time in the ICU: magnetic versus electrical stimulation. Intensive Care Med. 2011;37(12):1962–1968. PMID: 22005823 https://doi.org/10.1007/s00134-011-2374-2

114. You JW, Lee SJ, Kim YE, Cho YJ, Jeong YY, Kim HC, et al. Association between weight change and clinical outcomes in critically ill patients. J Crit Care. 2013;28(6):923–927. PMID: 24075294 https://doi.org/10.1016/j.jcrc.2013.07.055

115. Caporossi FS, Caporossi C, Borges Dock-Nascimento D, de Aguilar- Nascimento JE. Measurement of the thickness of the adductor pollicis muscle as a predictor of outcome in critically ill patients. Nutr Hosp. 2012;27(2):490–495. PMID: 22732973 https://doi.org/10.1590/S0212-16112012000200021

116. Sion-Sarid R, Cohen J, Houri Z, Singer P. Indirect calorimetry: a guide for optimizing nutritional support in the critically ill child. Nutrition. 2013;29(9):1094-1099. PMID: 23927944 https://doi.org/10.1016/j.nut.2013.03.013


Для цитирования:


Рахимов Р.Т., Лейдерман И.Н., Белкин А.А. Респираторная нейромиопатия как важный компонент полинейромиопатии критических состояний. Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь». 2020;9(1):108-122. https://doi.org/10.23934/2223-9022-2020-9-1-108-122

For citation:


Rakhimov R.T., Leyderman I.N., Belkin A.A. Respiratory Neuropathy as an Important Component of Critical Illness Polyneuromyopathy. Russian Sklifosovsky Journal "Emergency Medical Care". 2020;9(1):108-122. https://doi.org/10.23934/2223-9022-2020-9-1-108-122

Просмотров: 280


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2223-9022 (Print)
ISSN 2541-8017 (Online)