Нейропротективные свойства ксенона по данным экспериментальных исследований
https://doi.org/10.23934/2223-9022-2020-9-1-85-95
Аннотация
АННОТАЦИЯ. Увеличение числа пациентов с тяжелым повреждением мозга различной этиологии определяет необходимость совершенствования технологий нейропротекции. Обзор посвящен современным взглядам на механизмы защиты головного мозга, а также основным процессам, лежащим в основе повреждения нейронов. В статье обсуждаются результаты наиболее важных экспериментальных исследований в этой области с использованием инертного газа ксенона. Авторами про- веден анализ ряда работ, освещающих нейропротективные свойства ингаляционного анестетика ксенона в исследованиях in vitro и in vivo. Показаны основные механизмы гибели нейронов в зависимости от типа повреждения, продемонстрированы точки приложения защитного эффекта ксенона на головной мозг и перспективы дальнейших исследований в этой области.
Ключевые слова
Об авторах
О. А. ГребенчиковРоссия
Гребенчиков Олег Александрович, доктор медицинских наук, главный научный сотрудник
И. В. Молчанов
Россия
доктор медицинских наук, профессор, руководитель НИИ общей реаниматологии
А. И. Шпичко
Россия
кандидат медицинских наук, ведущий научный сотрудник лаборатории органопротекции при критических состояниях
А. К. Евсеев
Россия
доктор химических наук, ведущий научный сотрудник отделения общей реанимации
А. К. Шабанов
Россия
доктор медицинских наук, главный научный сотрудник лаборатории клинической патофизиологии при критических состояниях; зам. главного врача по анестезиологии и реаниматологии
Ш. Ж. Хусаинов
Россия
врач анестезиолог-реаниматолог
С. С. Петриков
Россия
член-корр. РАН, доктор медицинских наук, профессор, директор
Список литературы
1. Виленский Б.С., Яхно Н.Н. Современное состояние проблемы инсульта. Вестник Российской АМН. 2006;(9–10):18–23.
2. Пирадов М.А., Крылов В.В., Белкин А.А., Петриков С.С. Инсульты. В кн.: Гельфанд Б.Р., Заболотский И.Б. (ред). Интенсивная терапия. Национальное руководство. 2-е изд., перераб. и доп. Москва: ГЭО-ТАР-Медиа; 2017. с. 288–309.
3. Шевченко Е.В., Рамазанов Г.Р., Петриков С.С. Причины головокружения у больных с подозрением на острое нарушение мозгового кровообращения. Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь». 2018;7(3):217–221. https://doi.org/10.23934/2223-9022-2018-7-3-217-221
4. Гусев Е.И., Скворцова В.И., Стаховская Л.В. Проблемы инсульта в Российской Федерации: время активных совместных действий. Журнал неврологии и психиатрии им. С.С. Корсакова. 2007;107(8):4–10.
5. Министерство Здравоохранения РФ. Статистический сборник 2017 г. URL: https://www.rosminzdrav.ru/ministry/61/22/stranitsa-979/statisticheskie-i-informatsionnye-materialy/statisticheskiy-sbornik-2017-god [Дата обращения 05 февраля 2020 г.]
6. Крылов В.В., Петриков С.С., Талыпов А.Э., Пурас Ю.В., Солодов А.А., Левченко О.В., и др. Современные принципы хирургии тяжелой черепно-мозговой травмы. Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь». 2013; (4): 39–47.
7. Vella MA, Crandall ML, Patel MB. Acute Management of Traumatic Brain Injury. Surg Clin North Am. 2017;97(5):1015–1030. PMID: 28958355 https://doi.org/10.1016/j.suc.2017.06.003
8. Шабанов А.К., Картавенко В.И., Петриков С.С., Марутян З.Г., Розумный П.А., Черненькая Т.В., и др. Тяжелая сочетанная черепно-мозговая травма: особенности клинического течения и исходы. Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь». 2017;6(4):324–330. https://doi.org/10.23934/2223-9022-2017-6-4-324-330
9. Janowitz T, Menon DK. Exploring new routes for neuroprotective drug development in traumatic brain injury. Sci Transl Med. 2010;2(27):27rv1. PMID: 20393189 https://doi.org/10.1126/scitranslmed.3000330
10. Острова И.В., Гребенчиков О.А., Голубева Н.В. Нейропротективное действие хлорида лития на модели остановки сердца у крыс (экспериментальное исследование). Общая реаниматология. 2019;15(3):73-82. https://doi.org/10.15360/1813-9779-2019-3-73-82
11. Schapira Anthony H.V. Neuroprotection in Parkinson’s Disease. Chapter 18. In: Anthony H.V. Schapira, Anthony E.T. Lang, Stanley Fahn (eds.). Movement Disorders 4. Blue Books of Neurology. Vol. 34. Elsevier Inc; 2010. p.301–320. https://www.sciencedirect.com/bookseries/bluebooks-of-neurology/vol/34/suppl/C
12. Lawrence JH, Loomis WF. Preliminary observations on the narcotic effect of xenon with a review of values for solubilities of gases in water and oils. J Physiol. 1946;105(6):197–204. PMID: 20283155 https://doi.org/10.1113/jphysiol.1946.sp004164
13. Cullen SC, Gross EG. The anesthetic properties of xenon in animals and human beings, with additional observations on krypton. Science. 1951;113(2942):580–582. PMID: 14834873 https://doi.org/10.1126/science.113.2942.580
14. Pittinger CB, Moyers J, Cullen SC, Featherstone RM, Gross EG, et al. Clinicopathologic studies associated with xenon anesthesia. Anesthesiology. 1953; 14(1):10–17. PMID: 13017008 https://doi.org/10.1097/00000542-195301000-00002
15. Cullen SC, Eger 2nd EI, Cullen BF, Gregory P. Observations on the anesthetic effect of the combination of xenon and halothane. Anesthesiology. 1969;31(4):305–309. PMID: 5811596 https://doi.org/10.1097/00000542-196910000-00003
16. Nakata Y, Goto T, Ishiguro Y, Terui K, Kawakami H, Santo M, et al. Minimum alveolar concentration (MAC) of xenon with sevoflurane in humans. Anesthesiology. 2001; 94(4):611–614. PMID: 11379681 https://doi.org/10.1097/00000542-200104000-00014 .
17. Eger EI 2nd, Laster MJ, Gregory GA, Katoh T, Sonner JM, et al. Women appear to have the same minimum alveolar concentration as men: a retrospective study. Anesthesiology. 2003; 99(5):1059–1061. PMID: 14576539 https://doi.org/10.1097/00000542-200311000-00009
18. Буров Н.Е., Потапов В.Н., Макеев Г.Н. Ксенон в анестезиологии. Москва: Пульс; 2000.
19. Wilhelm S, Ma D, Maze M, Franks NP. Effects of xenon on in vitro and in vivo models of neuronal injury. Anesthesiology. 2002;96(6):1485–1491. PMID: 12170064 https://doi.org/10.1097/00000542-200206000-00031
20. Homi HM, Yokoo N, Ma D, Warner DS, Franks NP, Maze M, et al. The neuroprotective effect of xenon administration during transient middle cerebral artery occlusion in mice. Anesthesiology. 2003;99(4):876–881. PMID: 14508320 https://doi.org/10.1097/00000542-200310000-00020
21. Banks P, Franks NP, Dickinson R. Competitive inhibition at the glycine site of the N-methyl-D-aspartate receptor mediates xenon neuroprotection against hypoxia-ischemia. Anesthesiology. 2010;112(3):614–622. PMID: 20124979 https://doi.org/10.1097/aln.0b013e3181cea398
22. Franks NP, Dickinson R, de Sousa SL, et al. How does xenon produce anaesthesia? Nature. 1998;396(6709):324. PMID: 9845069 https://doi.org/10.1038/24525
23. Raja SN, Sivanesan E, Guan Y. Central Sensitization, N-methyl- D-aspartate Receptors, and Human Experimental Pain Models: Bridging the Gap between Target Discovery and Drug Development. Anesthesiology. 2019;131(2):233–235. PMID:31233408 https://doi.org/10.1097/aln.0000000000002808
24. Greger IH, Mayer ML. Structural biology of glutamate receptor ion channels: towards an understanding of mechanism. Curr Opin Struct Biol. 2019;57:185–195. PMID: 31185364 https://doi.org/10.1016/j.sbi.2019.05.004
25. Huang H, Liu S, Kornberg T.B. Glutamate signaling at cytoneme synapses. Science. 2019;363(6430):948–955. PMID: 30819957 https://doi.org/10.1126/science.aat5053
26. Kaneko Y, Tuazon JP, Ji X, Borlongan CV. Pituitary Adenylate Cyclase Activating Polypeptide Elicits Neuroprotection Against Acute Ischemic Neuronal Cell Death Associated with NMDA Receptors. Cell Physiol Biochem. 2018;51(4):1982–1995. PMID: 30513524 https://doi.org/10.1159/000495722
27. Liu Y, Li AQ, Ma W, Ma W, Gao YB, Deng LQ, et. al. Limb Remote Ischemic Preconditioning Reduces Repeated Ketamine Exposure- Induced Adverse Effects in the Developing Brain of Rats. J Mol Neurosci. 2019;68(1):58–65. https://doi.org/ 10.1007/s12031-019-01282-3
28. Yang Q, Huang Q, Hu Z, Tang X. Potential Neuroprotective Treatment of Stroke: Targeting Excitotoxicity, Oxidative Stress, and Inflammation. Front Neurosci. 2019;13:1036. PMID: 31611768 https://doi.org/10.3389/fnins.2019.01036
29. Simon RP, Swan SH, Griffiths T, Meldrum BS. Blockade of N-methyl- D-aspartate receptors may protect against ischemic damage in the brain. Science. 1984; 226(4676):850–852. PMID:6093256 https://doi.org/ 10.1126/science.6093256
30. Ladak AA, Enam SA, Ibrahim MT. A Review of the Molecular Mechanisms of Traumatic Brain Injury. World Neurosurg. 2019;131:126–132. PMID: 31301445 https://doi.org/10.1016/j.wneu.2019.07.039
31. Kim UJ, Lee BH, Lee KH. Neuroprotective effects of a protein tyrosine phosphatase inhibitor against hippocampal excitotoxic injury. Brain Res. 2019;1719:133-139. PMID: 31128098 https://doi.org/10.1016/j.brainres.2019.05.027
32. Andreasen SR, Lundbye CJ, Christensen TB, Thielsen KD, Schmitt-John T, Holm MM, et al. Excitatory-inhibitory imbalance in the brain of the wobbler mouse model of amyotrophic lateral sclerosis substantiated by riluzole and diazepam. Neurosci Lett. 2017;658:85–90. PMID: 28823891 https://doi.org/10.1016/j.neulet.2017.08.033
33. Wong TP, Howland JG, Wang YT. NMDA Receptors and Disease+C464. In: Encyclopedia of Neuroscience. 2009:1177–1182. https://doi.org/10.1016/b978-008045046-9.01223-7
34. Gruss M, Bushell TJ, Bright DP, Lieb WR, Mathie A, Franks NP, et al. Twopore- domain K+ channels are a novel target for the anesthetic gases xenon, nitrous oxide, and cyclopropane. Mol Pharmacol. 2004;65(2):443–452. PMID: 14742687 https://doi.org/10.1124/mol.65.2.443
35. Bantel C, Maze M, Trapp S. Neuronal preconditioning by inhalational anesthetics: evidence for the role of plasmalemmal adenosine triphosphate-sensitive potassium channels. Anesthesiology. 2009;110(5):986–995. PMID:19352153 https://doi.org/10.1097/ALN.0b013e31819dadc7
36. Maas A. Traumatic brain injury: Changing concepts and approaches. Chin J Traumatol. 2016;19(1):3–6. PMID: 27033264 https://doi.org/10.1016/j.cjtee.2016.01.001
37. Hill CS, Coleman MP, Menon DK. Traumatic Axonal Injury: Mechanisms and Translational Opportunities. Trends Neurosci. 2016; 39(5):311–324. PMID: 27040729 https://doi.org/10.1016/j.tins.2016.03.002
38. Campos-Pires R, Armstrong SP, Sebastiani A, Luh C, Gruss M, Radyushkin K, et al. Xenon improves neurologic outcome and reduces secondary injury following trauma in an in vivo model of traumatic brain injury. Crit Care Med. 2015;43(1):149–158. PMID: 25188549 https://doi.org/10.1097/CCM.0000000000000624
39. Campos-Piries R, Himet T, Valeo F, Luh C, Gruss M, Radyushkin K, et al. Xenon improves long-term cognitive function, reduces neuronal loss and chronic neuroinflammation, and improves survival after traumatic brain injury in mice. Br J Anaesth. 2019;123(1):60–73. PMID: 31122738 https://doi.org/ 10.1016/j.bja.2019.02.032
40. Campos-Pires R, Koziakova M, Yonis A, Pau A, Macdonald W, Harris K, et al. Xenon Protects against Blast-Induced Traumatic Brain Injury in an In Vitro Model. J Neurotrauma. 2018;35(8):1037–1044. PMID: 29285980 https://doi.org/10.1089/neu.2017.5360
41. Harris K, Armstrong SP, Campos-Pires R, Kiru L, Franks NP, Dickinson R, et al. Neuroprotection against traumatic brain injury by xenon, but not argon, is mediated by inhibition at the N-methyl-D-aspartate receptor glycine site. Anesthesiology. 2013;119(5):1137–1148. PMID: 23867231 https://doi.org/10.1097/ALN.0b013e3182a2a265
42. Donnan GA, Fisher M, Macleod M, Davis SM. Stroke. Lancet. 2008;371(9624):1612–1623. PMID: 18468545 https://doi.org/10.1016/S0140-6736(08)60694-7
43. Guruswamy R, ElAli A. Complex Roles of Microglial Cells in Ischemic Stroke Pathobiology: New Insights and Future Directions. Int J Mol Sci. 2017;18(3).pii:E496. PMID: 28245599 https://doi.org/10.3390/ijms18030496
44. Tymianski M. Emerging mechanisms of disrupted cellular signaling in brain ischemia. Nat Neurosci. 2011;14(11):1369–1373. PMID: 22030547 https://doi.org/10.1038/nn.2951
45. Lai TW, Zhang S, Wang YT. Excitotoxicity and stroke: identifying novel targets for neuroprotection. Prog Neurobiol. 2014;115:157–188. PMID: 24361499 https://doi.org/10.1016/j.pneurobio.2013.11.006
46. Cordonnier C, Demchuk A, Ziai W, Anderson CS. Intracerebral haemorrhage: current approaches to acute management. Lancet. 2018;392(10154):1257–1268. PMID: 30319113 https://doi.org/10.1016/S0140-6736(18)31878-6
47. Paroutoglou K, Parry-Jones AR. Hyperacute management of intracerebral haemorrhage. Clin Med (Lond). 2018;18(Suppl 2):s9–s12. PMID: 29700086 https://doi.org/10.7861/clinmedicine.18-2-s9
48. Kaiser S, Frase S, Selzner L, Lieberum JL, Wollborn J, Niesen WD, et al. Neuroprotection after Hemorrhagic Stroke Depends on Cerebral Heme Oxygenase-1. Antioxidants (Basel). 2019;8(10).pii: E496. PMID: 31635102 https://doi.org/10.3390/antiox8100496
49. Ardizzone TD, Lu A, Wagner KR, Tang Y, Ran R, Sharp FR. Glutamate receptor blockade attenuates glucose hypermetabolism in perihematomal brain after experimental intracerebral hemorrhage in rat. Stroke. 2004;35(11):2587–2591. PMID: 15375303 https://doi.org/10.1161/01.STR.0000143451.14228.ff
50. Qureshi AI, Ali Z, Suri MF, Shuaib A, Baker G, Todd K, et al. Extracellular glutamate and other amino acids in experimental intracerebral hemorrhage: An in vivo microdialysis study. Crit Care Med. 2003;31(5):1482–1489. PMID: 12771622 https://doi.org/10.1097/01.CCM.0000063047.63862.99
51. Aronowski J, Hall CE. New horizons for primary intracerebral hemorrhage treatment: Experience from preclinical studies. Neurol Res. 2005;27(3):268–279. PMID: 15845210 https://doi.org/10.1179/016164105X25225
52. Wang JA, Tong ML, Zhao B, Zhu G, Xi DH, Yang JP. Parthenolide ameliorates intracerebral hemorrhage-induced brain injury in rats. Phytother Res. 2020;34(1):153–160. PMID: 31497910 https://doi.org/10.1002/ptr.6510
53. Hickenbottom SL, Grotta JC, Strong R, Denner LA, Aronowski J. Nuclear factor-kappab and cell death after experimental intracerebral hemorrhage in rats. Stroke. 1999;30(11): 2472–2477. PMID: 10548686 https://doi.org/10.1161/01.str.30.11.2472
54. Wu J, Sun L, Li H, Shen H, Zhai W, Yu Z, et al. Roles of programmed death protein 1/programmed death-ligand 1 in secondary brain injury after intracerebral hemorrhage in rats: selective modulation of microglia polarization to anti-inflammatory phenotype. J Neuroinflammation. 2017;14(1):36. PMID: 28196545 https://doi.org/10.1186/s12974-017-0790-0
55. Wang J, Dore S. Inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab. 2007;27(5):894–908. PMID: 17033693 https://doi.org/10.1038/sj.jcbfm.9600403
56. Wang J, Fields J, Zhao C, Langer J, Thimmulappa RK, Kensler TW, et al. Role of nrf2 in protection against intracerebral hemorrhage injury in mice. Free Radic Biol Med. 2007; 43(3):408–414. PMID: 17602956 https://doi.org/ 10.1016/j.freeradbiomed.2007.04.020
57. Veltkamp R, Purrucker J. Management of Spontaneous Intracerebral Hemorrhage. Curr Neurol Neurosci Rep. 2017;17(10):80. PMID: 28887767 https://doi.org/ 10.1007/s11910-017-0783-5
58. Sansing LH. Intracerebral Hemorrhage. Semin Neurol. 2016;36(3):223–224. PMID: 27214696 https://doi.org/10.1055/s-0036-1583296
59. David HN, Haelewyn B, Risso JJ, Colloc’h N, Abraini JH. Xenon is an inhibitor of tissue-plasminogen activator: adverse and beneficial effects in a rat model of thromboembolic stroke. J Cereb Blood Flow Metab. 2010;30(4):718–728. PMID: 20087367 https://doi.org/10.1038/jcbfm.2009.275
60. Sheng SP, Lei B, James ML, Lascola CD, Venkatraman TN, Jung JY, et al. Xenon neuroprotection in experimental stroke: interactions with hypothermia and intracerebral hemorrhage. Anesthesiology. 2012;117(6):1262–1275. PMID: 23143806 https://doi.org/10.1097/ALN.0b013e3182746b81
61. Lavaur J, Le Nogue D, Lemaire M, Pype J, Farjot G, Hirsch EC, et al. The noble gas xenon provides protection and trophic stimulation to midbrain dopamine neurons. J Neurochem. 2017;142(1):14–28. PMID: 28398653 https://doi.org/ 10.1111/jnc.14041
62. Coburn M, Maze M, Franks NP. The neuroprotective effects of xenon and helium in an in vitro model of traumatic brain injury. Crit Care Med. 2008;36(2):588–595. PMID: 18216607 https://doi.org/10.1097/01.CCM.0B013E3181611F8A6
63. Macdonald RL, Schweizer TA. Spontaneous subarachnoid haemorrhage. Lancet. 2017;389(10069):655–666. PMID: 27637674 https://doi.org/10.1016/S0140-6736(16)30668-7
64. Grasso G, Alafaci C, Macdonald RL. Management of aneurysmal subarachnoid hemorrhage: State of the art and future perspectives. Surg Neurol Int. 2017;8:11. PMID: 28217390 https://doi.org/10.4103/2152-7806.198738
65. Veldeman M, Coburn M, Rossaint R, Clusmann H, Nolte K, Kremer B, et al. Xenon Reduces Neuronal Hippocampal Damage and Alters the Pattern of Microglial Activation after Experimental Subarachnoid Hemorrhage: A Randomized Controlled Animal Trial. Front Neurol. 2017; 8:511. PMID: 29021779 https://doi.org/10.3389/fneur.2017.00511
66. Miao YF, Peng T, Moody MR, Klegerman ME, Aronowski J, Grotta J, et al. Delivery of xenon-containing echogenic liposomes inhibits early brain injury following subarachnoid hemorrhage. Sci Rep. 2018;8(1):450. PMID: 29323183 https://doi.org/10.1038/s41598-017-18914-6
67. Káradóttir R, Cavelier P, Bergersen LH, Attwell D. NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature. 2005;438(7071):1162–1166. PMID: 16372011 https://doi.org/10.1038/nature04302
68. Pantoni L, Garcia JH, Gutierrez JA. Cerebral white matter is highly vulnerable to ischemia. Stroke. 1996;27(9):1641–1646. PMID: 8784142 https://doi.org/10.1161/01.str.27.9.1641
69. Fries M, Brücken A, Çizen A, Westerkamp M, Löwer C, Deike- Glindemann J, et al. Combining xenon and mild therapeutic hypothermia preserves neurological function after prolonged cardiac arrest in pigs. Crit Care Med. 2012;40(4):1297–1303. PMID: 22425822 https://doi.org/10.1097/CCM.0b013e31823c8ce7
70. Laitio R, Hynninen M, Arola O, Virtanen S, Parkkola R, Saunavaara J. et al. Effect of Inhaled Xenon on Cerebral White matter Damage in Comatose Survivors of Out-of-Hospital Cardiac Arrest: A Randomized Clinical Trial. JAMA. 2016;315(11):1120–1128. PMID: 26978207 https://doi.org/10.1001/jama.2016.1933
71. Laitio T, Maze M. Xenon limits brain damage following cardiac arrest. Shock. 2018;18(Is3):192–195.
72. Shu Y, Patel SM, Pac-Soo C, Fidalgo AR, Wan Y, Maze M, Ma D, et al. Xenon pretreatment attenuates anesthetic-induced apoptosis in the developing brain in comparison with nitrous oxide and hypoxia. Anesthesiology. 2010;113(2):360–368. PMID: 20613483 https://doi.org/10.1097/ALN.0b013e3181d960d7
73. Yang YW, Wang YL, Lu JK, Tian L, Jin M, Cheng WP, et al. Delayed xenon post-conditioning mitigates spinal cord ischemia/reperfusion injury in rabbits by regulating microglial activation and inflammatory factors. Neural Regen Res. 2018;13(3):510–517. PMID: 29623938 https://doi.org/10.4103/1673-5374.228757
Рецензия
Для цитирования:
Гребенчиков О.А., Молчанов И.В., Шпичко А.И., Евсеев А.К., Шабанов А.К., Хусаинов Ш.Ж., Петриков С.С. Нейропротективные свойства ксенона по данным экспериментальных исследований. Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь». 2020;9(1):85-95. https://doi.org/10.23934/2223-9022-2020-9-1-85-95
For citation:
Grebenchikov O.A., Molchanov I.V., Shpichko A.I., Yevseyev A.K., Shabanov A.K., Khusainov S.Z., Petrikov S.S. Neuroprotective Properties of Xenon According to Experimental Studies. Russian Sklifosovsky Journal "Emergency Medical Care". 2020;9(1):85-95. https://doi.org/10.23934/2223-9022-2020-9-1-85-95