Inhalation Injury (A Literature Review)
https://doi.org/10.23934/2223-9022-2019-8-2-166-174
Abstract
The analysis of domestic and foreign sources of literature showed that the problem of diagnosis and treatment of inhalation injury still remains relevant as 20-30 years ago. It is known that inhalation injury causes both local and systemic disorders. Existing diagnostic methods do not allow the extent of these disorders to be accurately determined. This, in turn, leads to the absence of clear criteria for the severity of inhalation injury and treatment algorithms.
About the Authors
E. A. ZhirkovaRussian Federation
Elena A. Zhirkova - Cand. Med. Sci., Researher of the Department of Acute Thermal Lesions.
3 Bolshaya Sukharevskaya Square, Moscow 129090
T. G. Spiridonova
Russian Federation
Tamara G. Spiridonova - Doctor of Medical Sciences, Scientific Consultant of the Department of Acute Thermal Lesions.
3 Bolshaya Sukharevskaya Square, Moscow 129090
P. A. Brygin
Russian Federation
Pavel A. Brygin - Candidate of Medical Sciences, Head of the Resuscitation and Intensive Care Unit for Burn Patients.
3 Bolshaya Sukharevskaya Square, Moscow 129090
A. V. Makarov
Russian Federation
Aleksey V Makarov - Endoscopist of the Department of Emergency Surgery, Endoscopy and Intensive Therapy.
3 Bolshaya Sukharevskaya Square, Moscow 129090
A. V. Sachkov
Russian Federation
Aleksey Vladimirovich Sachkov - Candidate of Medical Sciences, Head of the Scientific Department of Acute Thermal Lesions.
3 Bolshaya Sukharevskaya Square, Moscow 129090
References
1. Basharin V.A., Grebenyuk A.N., Markizova N.F., et al. Chemicals as fires damaging factor. Voenno-meditsinskiy zhurnal. 2015; 336(1): 22-28. (In Russian).
2. Mlcak R.P., Suman O.E., Herndon D.N. Respiratory management of inhalation injury. Burns. 2007; 33(1): 2-13. PMID: 17223484. DOI: 10.1016/j.burns.2006.07.007
3. Chen M.C., Chen M.H., Wen B.S., et al. The impact of inhalation injury in patients with small and moderate burns. Burns. 2014; 40(8): 14811486. PMID: 25239845. DOI: 10.1016/j.burns.2014.06.016.
4. Alekseev A.A., Degtyarev D.B., Krylov K.M., et al. Diagnosis and treatment of inhalation injury. Moscow, 2013. 24p.
5. Ryan C.M., Schoenfeld D.A., Thorpe W.P., et al. Objective estimates of the probability of death from burn injuries. N Engl J Med. 1998; 338(6): 362-366. PMID: 9449729. DOI: 10.1056/NEJM199802053380604.
6. Von Moos S., Franzen D., Kupferschmidt H. Inhalation trauma. Praxis (Bern 1994). 2013; 102(14): 829-839. PMID: 23823680. DOI: 10.1024/1661-8157/a001363.
7. Vivo C., Galeiras R., del Caz M.D. Initial evaluation and management of the critical burn. Med Intensiva. 2016; 40(1): 49-59. PMID: 26724246. DOI: 10.1016/j.medin.2015.11.010.
8. Tewarson A. Ventilation effects on combustion products. Toxicology. 1996; 115(1-3): 145-156. PMID: 9016749.
9. Kulig K. Cyanide antidotes and fire toxicology. NEnglJ Med. 1991; 325(25): 1801-1802. PMID: 1944486. DOI: 10.1056/NEJM199112193252508.
10. Walker P.F., Buehner M.F., Wood L.A., et al. Diagnosis and management of inhalation injury: an updated review. Crit Care. 2015; 19: 351-362. PMID: 26507130. DOI: 10.1186/s13054-015-1077-4.
11. Demling R.H. Smoke inhalation lung injury: an update. Eplasty. 2008; 8: e27. PMID: 18552974.
12. Kimura R., Traber L.D., Herndon D.N., et al. Increasing duration of smoke exposure induces more severe lung injury in sheep. J Appl Physiol (1985). 1988; 64(3): 1107-1113. PMID: 3366733. DOI: 10.1152/jappl.1988.64.3.1107.
13. Rong Y.H., Liu W., Wang C., et al. Temperature distribution in the upper airway after inhalation injury. Burns. 2011; 37(7): 1187-1191. PMID: 21816541. DOI: 10.1016/j.burns.2011.06.004
14. Moritz A.R., Henriques F.C., McLean R. The Effects of Inhaled Heat on the Air Passages and Lungs: An Experimental Investigation. Am J Pathol. 1945; 21(2): 311-331. PMID: 19970813. PMCID: PMC1934101.
15. Brain S.D., Cox H.M. Neuropeptides and their receptors: innovative science providing novel therapeutic targets. Br J Pharmacol. 2006; 147 Suppl 1: S202-211. PMID: 16402106. DOI: 10.1038/sj.bjp.0706461.
16. Dakhama A., Larsen G.L., Gelfand E.W. Calcitonin gene-related peptide: role in airway homeostasis. Curr Opin Pharmacol. 2004; 4(3): 215-220. PMID: 15140411. DOI: 10.1016/j.coph.2004.01.006.
17. Ren Y.H., Qin X.Q., Guan C.X. Temporal and spatial distribution of VIP, CGRP and their receptors in the development of airway hyperresponsiveness in the lungs. Sheng Li Xue Bao. 2004; 56(2): 137-146. PMID: 15127121.
18. Nadel J.A. Neutral endopeptidase modulates neurogenic inflammation. Eur Respir J. 1991; 4(6): 745-754. PMID: 1889501.
19. Nieman G.F., Clark W.R. Jr., Wax S.D., Webb S.R. The effect of smoke inhalation on pulmonary surfactant. Ann Surg. 1980; 191(2): 171-181. PMID: 6892674.
20. Rehberg S., Maybauer M.O., Enkhbaatar P. Pathophysiology, management and treatment of smoke inhalation injury. Expert Rev Respir Med. 2009; 3(3): 283-297. PMID: 20161170. DOI: 10.1586/ERS.09.21.
21. Enkhbaatar P., Pruitt B.A. Jr., Suman O., et al. Pathophysiology, research challenges, and clinical management of smoke inhalation injury. Lancet. 2016; 388(10052): 1437-1446. PMID: 27707500. DOI: 10.1016/ S0140-6736(16)31458-1.
22. Foncerrada G., Culnan D.M., Capek K.D., Gonzalez-Trejo S. Inhalation Injury in the Burned Patient. Ann Plast Surg. 2018; 80(3 Suppl 2): S98-S105. PMID: 29461292. DOI: 10.1097/SAP.0000000000001377.
23. Lange M., Hamahata A., Traber D.L., et al. Preclinical evaluation of epinephrine nebulization to reduce airway hyperemia and improve oxygenation after smoke inhalation injury. Crit Care Med. 2011; 39(4): 718-724. PMID: 21263320. DOI: 10.1097/CCM.0b013e318207ec52.
24. Cox R.A., Burke A.S., Soejima K., et al. Airway obstruction in sheep with burn and smoke inhalation injuries. Am J Respir Cell Mol Biol. 2003; 29(3 Pt 1): 295-302. PMID: 12936906. DOI: 10.1165/rcmb.4860.
25. Musch G., Winkler T., Harris R.S. Lung [(18)F]fluorodeoxyglucose uptake and ventilation-perfusion mismatch in the early stage of experimental acute smoke inhalation. Anesthesiology. 2014; 120(3): 683-693. PMID: 24051392. DOI: 10.1097/01.anes.0000435742.04859.e8.
26. Nikolaev A.Ya. Biological chemistry. 3rd ed., rev. and add. Moscow: Meditsinskoe informatsionnoe agentstvo, 2004. 566p. (In Russian).
27. MacLennan L., Moiemen N. Management of cyanide toxicity in patients with burns. Burns. 2015; 41(1): 18-24. PMID: 24994676. DOI: 10.1016/j.burns.2014.06.001.
28. Hardy K.R., Thom S.R. Pathophysiology and treatment of carbon monoxide poisoning. J Toxicol Clin Toxicol. 1994; 32(6): 613-629. PMID: 7966524.
29. Sheppard N.N., Hemington-Gorse S., Shelley O.P., et al. Prognostic scoring systems in burns: a review. Burns. 2011; 37(8): 1288-1295. PMID: 21940104. DOI: 10.1016/j.burns.2011.07.017.
30. You K., Yang H.T., Kym D., et al. Inhalation injury in burn patients: Establishing the link between diagnosis and prognosis. Burns. 2014; 40(8): 1470-1475. PMID: 25406889. DOI: 10.1016/j.burns.2014.09.015.
31. Dries D.J., Endorf F.W. Inhalation injury: epidemiology, pathology, treatment strategies. Scand J Trauma Resusc Emerg Med. 2013; 21: 31. PMID: 23597126. DOI: 10.1186/1757-7241-21-31.
32. Baud F.J., Barriot P., Toffis V., et al. Elevated blood cyanide concentrations in victims of smoke inhalation. N Engl J Med. 1991; 325(25): 1761-1766. PMID: 1944484. DOI: 10.1056/NEJM199112193252502.
33. Akira M., Suganuma N. Acute and subacute chemical-induced lung injuries: HRCT findings. Eur J Radiol. 2014; 83(8): 1461-1469. PMID: 24853247. DOI: 10.1016/j.ejrad.2014.04.024
34. Kwon H.P., Zanders T.B., Regn D.D., et al. Comparison of virtual bronchoscopy to fiber-optic bronchoscopy for assessment of inhalation injury severity. Burns. 2014; 40(7): 1308-1315. PMID: 25112807. DOI: 10.1016/j.burns.2014.06.007.
35. Oh J.S., Chung K.K., Allen A., et al. Admission chest CT complements fiberoptic bronchoscopy in prediction of adverse outcomes in thermally injured patients. J Burn Care Res. 2012; 33(4): 532-538. PMID: 22210063. DOI: 10.1097/BCR.0b013e318237455f.
36. Putman C.E., Loke J., Matthay R.A., Ravin C.E. Radiographic Manifestations of Acute Smoke Inhalation. AJR Am J Roentgenol. 1977; 129(5): 865-870. PMID: 410252. DOI: 10.2214/ajr.129.5.865.
37. Lee M.J., O’Connell D.J. The plain chest radiograph after acute smoke inhalation. Clin Radiol. 1988; 39(1): 33-37. PMID: 3338239.
38. Endorf F.W., Gamelli R.L. Inhalation injury, pulmonary perturbations, and fluid resuscitation. J Burn Care Res. 2007; 28(1): 80-83. PMID: 17211205. DOI: 10.1097/BCR.0B013E31802C889F.
39. Sinev Yu.V., Skripal’ A.Yu., Gerasimova L.I., et al. Fiber-optic bronchoscopy with thermoinsulation lesions of the respiratory tract.. Khirurgiya. 1988; 8: 100-104. (In Russian).
40. Moylan J.A. Jr., Wilmore D.W., Mouton D.E., Pruitt B.A. Jr. Early diagnosis of inhalation injury using 133 xenon lung scan. Ann Surg. 1972; 176(4): 477-484. PMID: 5077408.
41. Onishi S., Osuka A., Kuroki Y., Ueyama M. Indications of early intubation for patients with inhalation injury. Acute Med Surg. 2017; 4(3): 278-285. PMID: 29123875. DOI: 10.1002/ams2.269.
42. Spyropoulou G.A., Iconomou T., Tsagarakis M., Tsoutsos D. The Value and Prognostic Role of the CT Scan versus Chest Radiography in the Follow-up of Intubated Burn Patients with Possible Inhalation Injury. Ann Burns Fire Disasters. 2005; 18(2): 79-82. PMID: 21990983.
43. Hassan Z., Wong J.K., Bush J., et al. Assessing the severity of inhalation injuries in adults. Burns. 2010; 36(2): 212-216. PMID: 20006445. DOI: 10.1016/j.burns.2009.06.205.
44. Kim Y., Kym D., Hur J., et al. Does inhalation injury predict mortality in burns patients or require redefinition. PLoS One. 2017; 12(9): e0185195. PMID: 28953914. DOI: 10.1371/journal.pone.0185195.
45. Deutsch C.J., Tan A., Smailes S., Dziewulski P. The diagnosis and management of inhalation injury: An evidence based approach. Burns. 2018; 44(5): 1040-1051. PMID: 29398078. DOI: 10.1016/j.burns.2017.11.013.
46. Aung M.T., Garner D., Pacquola M., et al. The use of a simple three-level bronchoscopic assessment of inhalation injury to predict in-hospital mortality and duration of mechanical ventilation in patients with burns. Anaesth Intensive Care. 2018; 46(1): 67-73. PMID: 29361258.
47. Galankina I.E., Dement’eva I.V., Smirnov S.V., et al. Endoscopic and morphological evaluation of the efficiency of endobronchial laser therapy in inhalation trauma. Rossiyskiy meditsinskiy zhurnal. 2005; (1): 19-22. (In Russian).
48. Makarov A.V., Mironov A.V., Galankina I.Y., et al. The effect of early fibrobronchoscopic sanitation with human collagen type 1 on epithelization of damaged tracheal and bronchial mucosa in patients with inhalation injury. Russian Sklifosovsky Journal Emergency Medical Care. 2018;7(2): 111-116. DOI: 10.23934/2223-9022-2018-7-2-111-116.
49. Juschten J., Tuinman P.R., Juffermans N.P., et al. Nebulized anticoagulants in lung injury in critically ill patients-an updated systematic review of preclinical and clinical studies. Ann Transl Med. 2017; 5(22): 444. PMID: 29264361. DOI: 10.21037/atm.2017.08.23.
50. Kashefi N.S., Nathan J.I., Dissanaike S. Does a Nebulized Heparin/N-acetylcysteine Protocol Improve Outcomes in Adult Smoke Inhalation. PlastReconstr Surg Glob Open. 2014; 2(6): e165. PMID: 25289358. DOI: 10.1097/GOX.0000000000000121.
51. Jonkam C., Zhu Y., Jacob S., et al. Muscarinic receptor antagonist therapy improves acute pulmonary dysfunction after smoke inhalation injury in sheep. Crit Care Med. 2010; 38(12): 2339-2344. PMID: 20838334. DOI: 10.1097/CCM.0b013e3181f8557b.
52. Rousseau A.F., Damas P., Renwart L., et al. Use of a pediatric oxygenator integrated in a veno-venous hemofiltration circuit to remove CO2: a case report in a severe burn patient with refractory hypercapnia. Burns. 2014; 40(7): e57-60. PMID: 24685066. DOI: 10.1016/j.burns.2014.02.022.
53. Grube B.J., Marvin J.A., Heimbach D.M. Therapeutic hyperbaric oxygen: help or hindrance in burn patients with carbon monoxide poisoning. J Burn CareRehabil. 1988; 9(3): 249-252. PMID: 3417718.
54. Meyer G.W., Hart G.B., Strauss M.B. Hyperbaric oxygen therapy for acute smoke inhalation injuries. Postgrad Med. 1991; 89(1): 221-223. PMID: 1985314.
55. Yamamoto H., Teramoto H., Uetani K., et al. Cyclic stretch upregulates interleukin-8 and transforming growth factor-beta1 production through a protein kinase C-dependent pathway in alveolar epithelial cells. Respirology. 2002; 7(2): 103-109. PMID: 11985731.
56. Fischer S., Clauss M., Wiesnet M., et al. Hypoxia induces permeability in brain microvessel endothelial cells via VEGF and NO. Am J Physiol. 1999; 276(4 Pt 1): C812-820. PMID: 10199811.
57. Madjdpour C., Jewell U.R., Kneller S., et al. Decreased alveolar oxygen induces lung inflammation. Am J Physiol Lung Cell Mol Physiol. 2003; 284(2): L360-367. PMID: 12388372. DOI: 10.1152/ajplung.00158.2002.
58. Wood J.G., Johnson J.S., Mattioli L.F., Gonzalez N.C. Systemic hypoxia increases leukocyte emigration and vascular permeability in conscious rats. J Appl Physiol (1985). 2000; 89(4): 1561-1568. PMID: 11007596. DOI: 10.1152/jappl.2000.89.4.1561.
59. Moore S.J., Norris J.C., Walsh D.A., Hume A.S. Antidotal use of methemoglobin forming cyanide antagonists in concurent carbon monoxide/cyanide intoxication. J Pharmacol Exp Ther. 1987; 242(1): 70-73. PMID: 2886639.
60. Fortin J.L., Desmettre T., Manzon C. Cyanide poisoning and cardiac disorders: 161 cases. J Emerg Med. 2010; 38(4): 467-476. PMID: 20185266. DOI: 10.1016/j.jemermed.2009.09.028.
61. Anseeuw K., Delvau N., Burillo-Putze G., et al. Cyanide poisoning by fire smoke inhalation: a European expert consensus. Eur J Emerg Med. 2013; 20(1): 2-9. PMID: 22828651. DOI: 10.1097/MEJ.0b013e328357170b.
62. Brygin P.A., Smirnov S.V., Kartavenko V.I. Inhalation smoke damage: acute respiratory failure and respiratory support. Meditsina kriticheskikh sostoyaniy. 2005; (5): 16-21. (In Russian).
63. Badulak J.H., Schurr M., Sauaia A., et al. Defining the criteria for intubation of the patient with thermal burns. Burns. 2018; 44(3): 531-538. PMID: 29548862. DOI: 10.1016/j.burns.2018.02.016.
64. Dreyfuss D., Martin-Lefevre L., Saumon G. Hyperinflation-induced lung injury during alveolar flooding in rats: effect of perfluorocarbon instillation. Am JRespir Crit Care Med. 1999; 159(6): 1752-1757. PMID: 10351914. DOI: 10.1164/ajrccm.159.6.9805018.
65. Jones S.W., Williams F.N., Cairns B.A., Cartotto R. Inhalation Injury: Pathophysiology, Diagnosis, and Treatment. Clin Plast Surg. 2017; 44(3): 505-511. PMID: 28576239. DOI: 10.1016/j.cps.2017.02.009.
66. Hiller K.N., Morgan C.K. High-frequency percussive ventilation for severe inhalation injury. Anesthesiology. 2014; 120(4): 998. PMID: 23435385. DOI: 10.1097/ALN.0b013e31828ce85c.
67. Shah S., Vizcaychipi M. High-frequency percussive ventilation and initial biomarker levels of lung injury after smoke inhalation - Not Straightforward to Interpret. Burns. 2016; 42(5): 1141. PMID: 27211363. DOI: 10.1016/j.burns.2014.11.019.
68. Silva L., Garcia L., Oliveira B., et al. Acute respiratory distress syndrome in burn patients: incidence and risk factor analysis. Ann Burns Fire Disasters. 2016; 29(3): 178-182. PMID: 28149245.
69. Cartotto R., Li Z., Hanna S., et al. The Acute Respiratory Distress Syndrome (ARDS) in mechanically ventilated burn patients: An analysis of risk factors, clinical features, and outcomes using the Berlin ARDS definition. Burns. 2016; 42(7): 1423-1432. PMID: 27520712. DOI: 10.1016/j.burns.2016.01.031.
Review
For citations:
Zhirkova E.A., Spiridonova T.G., Brygin P.A., Makarov A.V., Sachkov A.V. Inhalation Injury (A Literature Review). Russian Sklifosovsky Journal "Emergency Medical Care". 2019;8(2):166-174. https://doi.org/10.23934/2223-9022-2019-8-2-166-174