Mechanical Circulatory Support in Patients with End-Stage Heart Failure: a Literature Review (Part 1)
https://doi.org/10.23934/2223-9022-2025-14-3-586-600
Abstract
Chronic heart failure (CHF) is a progressive and irreversible syndrome that develops against the background of structural and functional disorders of the heart. It is accompanied by a decrease in cardiac output, pressure overload and a high level of hospitalizations, which makes CHF one of the key medical and social problems of our time. In recent decades, the prevalence of CHF has been steadily increasing, especially among the elderly population, which is associated with an increase in life expectancy and an improvement in the quality of medical care. According to forecasts, by 2050 the number of patients will increase by 50-60% compared to 2010.
The terminal stage of CHF is characterized by an extremely unfavorable prognosis: survival does not exceed 25-30%. Heart transplantation (HT) remains the only radical treatment method that can significantly improve survival and quality of life. However, the shortage of donor organs and the growing number of patients necessitate the use of mechanical circulatory support (MCS) as a temporary or long-term alternative.
MPC systems act as a “bridge” to transplantation, allowing for hemodynamic stabilization and organ function support before surgery. The most common short-term support technologies are extracorporeal membrane oxygenation (ECMO), intra-aortic balloon pump (IABP), and temporary axial pumps (Impella, TandemHeart). ECMO provides both respiratory and hemodynamic support, but is associated with a high risk of complications and relatively low survival. IABP is the most accessible method, improving coronary perfusion, but provides limited support. Impella devices demonstrate higher efficiency, unloading the left ventricle and improving systemic hemodynamics, while being characterized by fewer complications. TandemHeart provides a comparable effect, but requires a more complex installation technique.
The choice of MPC method depends on the patient’s condition, the severity of multiorgan dysfunction, the availability of equipment, and the qualifications of the specialists. Current research confirms that a combination of different devices (e.g., ECMO and Impella) can improve outcomes.
Thus, mechanical circulatory support occupies a central place in the treatment of terminal heart failure in conditions of limited donor resources, allowing to gain time before transplantation and reduce mortality on the waiting list.
About the Authors
M. Sh. KhubutiyaRussian Federation
Mogeli Sh. Khubutiya, Academician of the Russian Academy of Sciences, Professor, President,
Bolshaya Sukharevskaya Sq. 3, Moscow, 129090
A. S. Tokarev
Russian Federation
Aleksey S. Tokarev, Candidate of Medical Science, Research Associate, Department of Emergency Neurosurgery,
Bolshaya Sukharevskaya Sq. 3, Moscow, 129090
N. V. Rubtsov
Russian Federation
Nikolay V. Rubtsov, Candidate of Medical Science, Research Associate, Scientific Department of Emergency Cardiac Surgery,
Bolshaya Sukharevskaya Sq. 3, Moscow, 129090
M. V. Israpiev
Russian Federation
Magomed V. Israpiev, Specialist of the Organizational and Methodological Department for Inpatient Care,
Sharikopodshipnikovskaya Str. 9, Moscow, 115088
L. G. Khutsishvili
Russian Federation
Levan G. Khutsishvili, Junior Researcher, Scientific Department of Emergency Cardiac Surgery, Bolshaya Sukharevskaya Sq. 3, Moscow, 129090;
Specialist of the Organizational and Methodological Department for Inpatient Care, Sharikopodshipnikovskaya Str. 9, Moscow, 115088
M. A. Sagirov
Russian Federation
Marat A. Sagirov, Head of the Scientific Department of Emergency Cardiac Surgery,
Bolshaya Sukharevskaya Sq. 3, Moscow, 129090
I. A. Argir
Russian Federation
Ivan A. Argir, Junior Researcher, Scientific Department of Emergency Cardiac Surgery, Bolshaya Sukharevskaya Sq. 3, Moscow, 129090;
Specialist of the Organizational and Methodological Department for Inpatient Care, Sharikopodshipnikovskaya Str. 9, Moscow, 115088
References
1. 2020 Clinical practice guidelines for Chronic heart failure. Russian Journal of Cardiology. 2020;25(11):4083. (In Russ.) https://doi.org/10.15829/1560-4071-2020-4083
2. Gao K, Zhao H, Gao J, Wen B, Jia C, Wang Z, et al. Mechanism of Chinese Medicine Herbs Effects on Chronic Heart Failure Based on Metabolic Profiling. Front Pharmacol. 2017;8:864. PMID: 29213243 https://doi.org/10.3389/fphar.2017.00864
3. Yang B, Wang F, Cao H, Liu G, Zhang Y, Yan P, et al. Caffeoylxanthiazonoside exerts cardioprotective effects during chronic heart failure via inhibition of inflammatory responses in cardiac cells. Exp Ther Med. 2017;14(5):4224–4230. PMID: 29104638 https://doi.org/10.3892/etm.2017.5080.
4. Tereshchenko SN, Zhirov IV. Chronic heart failure: New challenges and new perspectives. Therapeutic Archive. 2017;89(9):4–9. (In Russ.) https://doi.org/10.17116/terarkh20178994-9
5. Liguori I, Russo G, Curcio F, Sasso G, Della-Morte D, Gargiulo G, et al. Depression and chronic heart failure in the elderly: an intriguing relationship. J Geriatr Cardiol. 2018;15(6):451–459. PMID: 30108618. https://doi.org/10.11909/j.issn.1671-5411.2018.06.014.
6. Wang Y, Ma X. Relationship between changes of electrocardiogram indexes in chronic heart failure with arrhythmia and serum PIIINP and BNP. Exp Ther Med. 2020;19(1):591–596. PMID: 31897101 https://doi.org/10.3892/etm.2019.8269.
7. Halade GV, Kain V, Ingle KA. Heart functional and structural compendium of cardiosplenic and cardiorenal networks in acute and chronic heart failure pathology. Am J Physiol Heart Circ Physiol. 2018;314(2):H255– H267. PMID: 29101178. https://doi.org/10.1152/ajpheart.00528.2017
8. Groenewegen A, Rutten FH, Mosterd A, Hoes AW. Epidemiology of heart failure. Eur J Heart Fail. 2020;22(8):1342–1356. PMID: 32483830 https://doi.org/10.1002/ejhf.1858
9. van Riet EE, Hoes AW, Wagenaar KP, Limburg A, Landman MA, Rutten FH. Epidemiology of heart failure: the prevalence of heart failure and ventricular dysfunction in older adults over time. A systematic review. Eur J Heart Fail. 2016;18(3):242–252. PMID: 26727047 https://doi.org/10.1002/ejhf.483.
10. Sredniawa B, Cebula S, Kowalczyk J, Batchvarov VN, Musialik-Lydka A, Sliwinska A, et al. Heart rate turbulence for prediction of heart transplantation and mortality in chronic heart failure. Ann Noninvasive Electrocardiol. 2010;15(3):230–7. PMID: 20645965 https://doi.org/10.1111/j.1542-474X.2010.00369.x
11. Gioli-Pereira L, Marcondes-Braga FG, Bernardez-Pereira S, Bacal F, Fernandes F, Mansur AJ, et al. Predictors of one-year outcomes in chronic heart failure: the portrait of a middle income country. BMC Cardiovasc Disord. 2019;19(1):251. PMID: 31706288 https://doi.org/10.1186/s12872-019-1226-9
12. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2016;37(27):2129–2200. PMID: 27206819 https://doi.org/10.1093/eurheartj/ehw128
13. Khubutiya MSh, Sokolov VV, Redkoborodyy AV, Kozlov IA, Timerbaev VKh, Khutsishvili LG, et al. The experience of 70 heart transplants in a multidisciplinary medical care facility. Transplantologiya. The Russian Journal of Transplantation. 2018;10(3):197–206. (In Russ.) https://doi.org/10.23873/2074-0506-2018-10-3-197-206
14. Barazzoni R, Gortan Cappellari G, Palus S, Vinci P, Ruozi G, Zanetti M, et al. Acylated ghrelin treatment normalizes skeletal muscle mitochondrial oxidative capacity and AKT phosphorylation in rat chronic heart failure. J Cachexia Sarcopenia Muscle. 2017;8(6):991–998. PMID: 29098797 https://doi.org/10.1002/jcsm.12254
15. Hua CY, Huang Y, Su YH, Bu JY, Tao HM. Collaborative care model improves self-care ability, quality of life and cardiac function of patients with chronic heart failure. Braz J Med Biol Res. 2017;50(11): e6355. PMID: 28953989 https://doi.org/10.1590/1414-431X20176355.
16. Shah KS, Xu H, Matsouaka RA, Bhatt DL, Heidenreich PA, Hernandez AF, et al. Heart Failure With Preserved, Borderline, and Reduced Ejection Fraction: 5-Year Outcomes. J Am Coll Cardiol. 2017;70(20):2476–2486. PMID: 29141781 https://doi.org/10.1016/j.jacc.2017.08.074
17. Alla F, Zannad F, Filippatos G. Epidemiology of acute heart failure syndromes. Heart Fail Rev. 2007;12(2):91–95. PMID: 17450426 https://doi.org/10.1007/s10741-007-9009-2
18. Kontogiannis CD, Malliaras K, Kapelios CJ, Mason JW, Nanas JN. Continuous internal counterpulsation as a bridge to recovery in acute and chronic heart failure. World J Transplant. 2016;6(1):115–124. PMID: 27011909 https://doi.org/10.5500/wjt.v6.i1.115
19. Braunwald E. The war against heart failure: the Lancet lecture. Lancet. 2015;385(9970):812–824. PMID: 25467564 https://doi.org/10.1016/S0140-6736(14)61889-4
20. Borisenko O, Müller-Ehmsen J, Lindenfeld J, Rafflenbeul E, Hamm C. An early analysis of cost-utility of baroreflex activation therapy in advanced chronic heart failure in Germany. BMC Cardiovasc Disord. 2018;18(1):163. PMID: 30092774 https://doi.org/10.1186/s12872-018-0898-x
21. Jones NR, Roalfe AK, Adoki I, Hobbs FDR, Taylor CJ. Survival of patients with chronic heart failure in the community: a systematic review and meta-analysis. Eur J Heart Fail. 2019;21(11):1306–1325. PMID: 31523902 https://doi.org/10.1002/ejhf.1594
22. Berthelot E, Bauer F, Eicher JC, Flécher E, Gellen B, Guihaire J, et al. Pulmonary hypertension in chronic heart failure: definitions, advances, and unanswered issues. ESC Heart Fail. 2018;5(5):755–763. PMID: 30030912; https://doi.org/10.1002/ehf2.12316
23. Guo L, Yuan H, Zhang D, Zhang J, Hua Q, Ma X, et al. A multicenter, randomized, double-blind, placebo-parallel controlled trial for the efficacy and safety of shenfuqiangxin pills in the treatment of chronic heart failure (Heart-Kidney yang deficiency syndrome). Medicine (Baltimore). 2020;99(21):e20271. PMID: 32481305 https://doi.org/10.1097/MD.0000000000020271
24. Hu CS, Wu QH, Hu DY, Tkebuchava T. Treatment of chronic heart failure in the 21st century: A new era of biomedical engineering has come. Chronic Dis Transl Med. 2018;5(2):75–88. PMID: 31367696 https://doi.org/10.1016/j.cdtm.2018.08.005
25. Jaramillo N, Segovia J, Gómez-Bueno M, García-Cosío D, Castedo E, Serrano S, et al. Characteristics of patients with survival longer than 20 years following heart transplantation. Rev Esp Cardiol (Engl Ed). 2013;66(10):797–802. PMID: 24773860 https://doi.org/10.1016/j.rec.2013.05.016
26. Shindrikov RYu, Shchelkova OYu, Demchenko EA, Sitnikova MYu. Psychosocial Status of Patients With Chronic Heart Failure Awaiting Heart Transplantation. RUDN Journal of Psychology and Pedagogics. 2019;16(2):163–180. (In Russ.) https://doi.org/10.22363/2313-1683-2019-16-2-163-180
27. Fernandes LCBC, de Oliveira IM, Fernandes PFCBC, de Souza Neto JD, Farias MDSQ, de Freitas NA, et al. Impact of Heart Transplantation on the Recovery of Peripheral and Respiratory Muscle Mass and Strength in Patients With Chronic Heart Failure. Transplant Direct. 2018;4(11):e395. PMID: 30534588 https://doi.org/10.1097/TXD.0000000000000837
28. Fried JA, Nair A, Takeda K, Clerkin K, Topkara VK, Masoumi A, et al. Clinical and hemodynamic effects of intra-aortic balloon pump therapy in chronic heart failure patients with cardiogenic shock. J Heart Lung Transplant. 2018;37(11):1313–1321. PMID: 29678608 https://doi.org/10.1016/j.healun.2018.03.011
29. Everly MJ. Cardiac transplantation in the United States: an analysis of the UNOS registry. Clin Transpl. 2008:35–43. PMID: 19708444.
30. Fukuhara S, Takeda K, Kurlansky PA, Naka Y, Takayama H. Extracorporeal membrane oxygenation as a direct bridge to heart transplantation in adults. J Thorac Cardiovasc Surg. 2018;155(4):1607–1618.e6. PMID: 29361299 https://doi.org/10.1016/j.jtcvs.2017.10.152
31. Todurov BM, Kovtun HI, Shpachuk AO, Kuzmich IN, Druzhina AN, Sudakevich SN, et al. LVAD Use in the Treatment of End-Stage Heart Failure. Ukrainian Journal of Cardiovascular Surgery. 2020;2(39):43–47. https://doi.org/10.30702/ujcvs/20.3905/031043-047
32. Dogonasheva AA. Transplantatsiya serdtsa patsientam s predtransplantatsionnoy veno-arterial’noy ekstrakorporal’noy membrannoy oksigenatsiey: cand. med. sci. diss. synopsis. Moscow, 2020. (In Russ.)
33. Ismagilov FR, Vavilov VE, Nurgalieva RA. Present and Future of Circulatory Assist Devices (Review). Nauchnoe Priborostroenie. 2019; 29(4):19–27. (In Russ.) https://doi.org/10.18358/np-29-4-i1927
34. Ukhrenkov SG. Perifericheskaya veno-arterial’naya ekstrakorporal’naya membrannaya oksigenatsiya kak metod mekhanicheskoy podderzhki u potentsial’nykh retsipientov serdtsa: cand. med. sci. diss. synopsis. Moscow, 2017. (In Russ.)
35. Pons S, Sonneville R, Bouadma L, Styfalova L, Ruckly S, Neuville M, et al. Infectious complications following heart transplantation in the era of high-priority allocation and extracorporeal membrane oxygenation. Ann Intensive Care. 2019;9(1):17. PMID: 30684052 https://doi.org/10.1186/s13613-019-0490-2
36. Czapran A, Steel M, Barrett NA. Extra-corporeal membrane oxygenation for severe respiratory failure in the UK. J Intensive Care Soc. 2020;21(3):247–255. PMID: 32782465 https://doi.org/10.1177/1751143719870082
37. Hadaya J, Benharash P. Extracorporeal Membrane Oxygenation. JAMA. 2020;323(24):2536. PMID: 32463441 https://doi.org/10.1001/jama.2020.9148.
38. Shelukhin DA, Pavlov AI, Ershov AL. Extracorporeal membrane oxygenation for patients with severe respiratory failure. Case report: first time in Russia inter-hospital aeromedical transportation of the patient with severe acute respiratory failure on extracorporeal membrane oxygenation. Medicо-Biological and Socio-Psychological Problems of Safety in Emergency Situations. 2015;(3):24–34. (In Russ.) https://doi.org/10.25016/2541-7487-2015-0-3-24-34
39. Quintel M, Bartlett RH, Grocott MPW, Combes A, Ranieri MV, Baiocchi M, et al. Extracorporeal Membrane Oxygenation for Respiratory Failure. Anesthesiology. 2020;132(5):1257–1276. PMID: 32149776. https://doi.org/10.1097/ALN.0000000000003221
40. Evseev AK, Zhuravel SV, Alentiev AYu, Goroncharovskaya IV, Petrikov SS. Membranes in Extracorporeal Blood Oxygenation Technology. Membranes and Membrane Technologies. 2019;1(4):201–211 41. OPTN. Organ Procurement and Transplantation Network. Policies. 2020. Available at: https://www.lungbioengineering.com/wp-content/uploads/sites/3/2020/06/optn_policies.pdf [Accessed Aug 25, 2025]
41. Kornelyuk RA, Vereshchagin IE, Shukevich DL, Ganyukov VI. Mechanical circulatory support in high-risk percutaneous coronary intervention. Complex Issues of Cardiovascular Diseases. 2018;7(4S):54–65. (In Russ.) https://doi.org/10.17802/2306-1278-2018-7-4S-54-65
42. Su Y, Liu K, Zheng JL, Li X, Zhu DM, Zhang Y, et al. Hemodynamic monitoring in patients with venoarterial extracorporeal membrane oxygenation. Ann Transl Med. 2020;8(12):792. PMID: 32647717 https://doi.org/10.21037/atm.2020.03.186
43. Rao P, Khalpey Z, Smith R, Burkhoff D, Kociol RD. Venoarterial Extracorporeal Membrane Oxygenation for Cardiogenic Shock and Cardiac Arrest. Circ Heart Fail. 2018;11(9):e004905. PMID: 30354364. https://doi.org/10.1161/CIRCHEARTFAILURE.118.004905
44. Perifericheskaya veno-arterial’naya ekstrakorporal’naya membrannaya oksigenatsiya pered transplantatsiey serdtsa. Natsional’nye klinicheskie rekomendatsii. Moscow, 2015. (In Russ.) Available at: https://transpl.ru/files/rto/perefer-abo-pered-transpl.pdf [Accessed Aug 25, 2025]
45. Parhar KK, Fedak PWM. Bridging to heart transplant with extracorporeal membrane oxygenation: Good or VAD? J Thorac Cardiovasc Surg. 2018;155(4):1619–1620. PMID: 29310932 https://doi.org/10.1016/j.jtcvs.2017.12.001
46. Rupprecht L, Lunz D, Philipp A, Lubnow M, Schmid C. Pitfalls in percutaneous ECMO cannulation. Heart Lung Vessel. 2015;7(4):320– 326. PMID: 26811838
47. Hong KN, Iribarne A, Worku B, Takayama H, Gelijns AC, Naka Y, et al. Who is the high-risk recipient? Predicting mortality after heart transplant using pretransplant donor and recipient risk factors. Ann Thorac Surg. 2011;92(2):520–527; discussion 527. PMID: 21683337 https://doi.org/10.1016/j.athoracsur.2011.02.086
48. Worku B, Pak SW, van Patten D, Housman B, Uriel N, Colombo P, et al. The CentriMag ventricular assist device in acute heart failure refractory to medical management. J Heart Lung Transplant. 2012;31(6):611–617. PMID: 22608770. https://doi.org/10.1016/j.healun.2011.12.016
49. Russo CF, Cannata A, Lanfranconi M, Bruschi G, Milazzo F, Paino R, et al. Veno-arterial extracorporeal membrane oxygenation using Levitronix centrifugal pump as bridge to decision for refractory cardiogenic shock. J Thorac Cardiovasc Surg. 2010;140(6):1416–1421. PMID: 20933244 https://doi.org/10.1016/j.jtcvs.2010.07.083
50. Spirina EA, Saitgareev RS, Shumakov DV, Zakharevitch VM, Slobodyannik VV, Minina MG, et al. Peripheral Veno-Arterial ECMO as Mechanical Circulatory Support Before Heart Transplantation. Russian Journal of Transplantology and Artificial Organs. 2013;15(2):23–35. (In Russ.) https://doi.org/10.15825/1995-1191-2013-2-23-35
51. Barth E, Durand M, Heylbroeck C, Rossi-Blancher M, Boignard A, Vanzetto G, et al. Extracorporeal life support as a bridge to highurgency heart transplantation. Clin Transplant. 2012;26(3):484–488. PMID: 21919969 https://doi.org/10.1111/j.1399-0012.2011.01525.x
52. Poptsov VN, Saitgareev RSh, Shumakov DV, Zakharevich VM, Akopov GA, Shevchenko AO, et al. Ortotopicheskaya transplantatsiya serdtsa u retsipientov 60 let i starshe. Vestnik transplantologii i iskusstvennykh organov. 2016;18(S):28 (In Russ.)
53. Balasubramanya S, Arabia F, Moriguchi J, Kobashigawa J, Esmailian F. Extracorporeal Membrane Oxygenation as a Bridge to Recovery, Bridge to Ventricular Assist Device and Bridge to Heart Transplantation: A Retrospective Review of Data From a Single Tertiary Care Institution. The Journal of Heart and Lung Transplantation. 2014; 33(4):S78. https://doi.org/10.1016/j.healun.2014.01.244
54. Barge-Caballero G, Castel-Lavilla MA, Almenar-Bonet L, Garrido-Bravo IP, Delgado JF, Rangel-Sousa D, et al. Venoarterial extracorporeal membrane oxygenation with or without simultaneous intra-aortic balloon pump support as a direct bridge to heart transplantation: results from a nationwide Spanish registry. Interact Cardiovasc Thorac Surg. 2019;29(5):670–677. PMID: 31257414 https://doi.org/10.1093/icvts/ivz155
55. Karamlou T, Gelow J, Diggs BS, Tibayan FA, Mudd JM, Guyton SW, et al. Mechanical circulatory support pathways that maximize post-heart transplant survival. Ann Thorac Surg. 2013;95(2):480–485; discussion 485. PMID: 22921240 https://doi.org/10.1016/j.athoracsur.2012.05.108
56. Lund LH, Edwards LB, Kucheryavaya AY, Dipchand AI, Benden C, Christie JD, et al. The Registry of the International Society for Heart and Lung Transplantation: Thirtieth Official Adult Heart Transplant Report– 2013; focus theme: age. J Heart Lung Transplant. 2013;32(10):951–964. PMID: 24054804 https://doi.org/10.1016/j.healun.2013.08.006
57. Cho YH, Yang JH, Sung K, Jeong DS, Park PW, Kim WS, et al. Extracorporeal life support as a bridge to heart transplantation: importance of organ failure in recipient selection. ASAIO J. 2015;61(2):139–143. PMID: 25396273 https://doi.org/10.1097/MAT.0000000000000171
58. Burrell AJC, Bennett V, Serra AL, Pellegrino VA, Romero L, Fan E, et al. Venoarterial extracorporeal membrane oxygenation: A systematic review of selection criteria, outcome measures and definitions of complications. J Crit Care. 2019;53:32–37. PMID: 31181462 https://doi.org/10.1016/j.jcrc.2019.05.011
59. Jasseron C, Lebreton G, Cantrelle C, Legeai C, Leprince P, Flecher E, et al. Impact of Heart Transplantation on Survival in Patients on Venoarterial Extracorporeal Membrane Oxygenation at Listing in France. Transplantation. 2016;100(9):1979–1987. PMID: 27306536 https://doi.org/10.1097/TP.0000000000001265
60. Combes A. Mechanical circulatory support for end-stage heart failure. Metabolism. 2017;69S:S30–S35. PMID: 28153356 https://doi.org/10.1016/j.metabol.2017.01.009
61. Sy E, Sklar MC, Lequier L, Fan E, Kanji HD. Anticoagulation practices and the prevalence of major bleeding, thromboembolic events, and mortality in venoarterial extracorporeal membrane oxygenation: A systematic review and meta-analysis. J Crit Care. 2017;39:87–96. PMID: 28237895 https://doi.org/10.1016/j.jcrc.2017.02.014
62. Le Guennec L, Cholet C, Huang F, Schmidt M, Bréchot N, Hékimian G, et al. Ischemic and hemorrhagic brain injury during venoarterialextracorporeal membrane oxygenation. Ann Intensive Care. 2018;8(1):129. PMID: 30570687. https://doi.org/10.1186/s13613-018-0475-6
63. Sutter R, Tisljar K, Marsch S. Acute Neurologic Complications During Extracorporeal Membrane Oxygenation: A Systematic Review. Crit Care Med. 2018;46(9):1506–1513. PMID: 29782356 https://doi.org/10.1097/CCM.0000000000003223
64. Hess NR, Hickey GW, Sultan I, Kilic A. Extracorporeal membrane oxygenation bridge to heart transplant: Trends following the allocation change. J Card Surg. 2020. PMID: 330905852020 https://doi.org/10.1111/jocs.15118
65. Xie A, Lo P, Yan TD, Forrest P. Neurologic Complications of Extracorporeal Membrane Oxygenation: A Review. J Cardiothorac Vasc Anesth. 2017;31(5):1836–1846. PMID: 28625752 https://doi.org/10.1053/j.jvca.2017.03.001
66. Taradin GG, Vatutin NT, Sidorenko IA, Popelnukhina LG, Gritzenko YP. The management of critical conditions in peripartum cardiomyopathy (part II). University Clinic. 2017;13(2):205–212 (In Russ.)
67. Hassett CE, Cho SM, Hasan S, Rice CJ, Migdady I, Starling RC, et al. Ischemic Stroke and Intracranial Hemorrhages During Impella Cardiac Support. ASAIO J. 2020;66(8):e105–e109. PMID: 32740362. https://doi.org/10.1097/MAT.0000000000001132
68. Norkiene I, Ringaitiene D, Rucinskas K, Samalavicius R, Baublys A, Miniauskas S, et al. Intra-aortic balloon counterpulsation in decompensated cardiomyopathy patients: bridge to transplantation or assist device. Interact Cardiovasc Thorac Surg. 2007;6(1):66–70. PMID: 17669772 https://doi.org/10.1510/icvts.2006.140160
69. Gjesdal O, Gude E, Arora S, Leivestad T, Andreassen AK, Gullestad L, et al. Intra-aortic balloon counterpulsation as a bridge to heart transplantation does not impair long-term survival. Eur J Heart Fail. 2009;11(7):709–714. PMID: 19515719 https://doi.org/10.1093/eurjhf/hfp078
70. Nwaejike N, Son AY, Milano CA, Daneshmand MA. Is there a role for upper-extremity intra-aortic balloon counterpulsation as a bridge-torecovery or a bridge-to-transplant in the treatment of end-stage heart failure? Interact Cardiovasc Thorac Surg. 2017;25(4):654–658. PMID: 28962495 https://doi.org/10.1093/icvts/ivx165
71. Huckaby LV, Seese LM, Mathier MA, Hickey GW, Kilic A. Intra-Aortic Balloon Pump Bridging to Heart Transplantation: Impact of the 2018 Allocation Change. Circ Heart Fail. 2020;13(8):e006971. PMID: 32757643. https://doi.org/10.1161/CIRCHEARTFAILURE.120.006971
72. Cheng R, Tank R, Ramzy D, Azarbal B, Chung J, Esmailian F, et al. Clinical Outcomes of Impella Microaxial Devices Used to Salvage Cardiogenic Shock as a Bridge to Durable Circulatory Support or Cardiac Transplantation. ASAIO J. 2019;65(7):642–648. PMID: 30281541 https://doi.org/10.1161/10.1097/MAT.0000000000000877
73. Monteagudo Vela M, Simon A, Riesgo Gil F, Rosenberg A, Dalby M, Kabir T, et al. Clinical Indications of IMPELLA Short-Term Mechanical Circulatory Support in a Tertiary Centre. Cardiovasc Revasc Med. 2020;21(5):629–637. PMID: 31859100 https://doi.org/10.1016/j.carrev.2019.12.010
74. Gregoric ID. Triage VADs: TandemHeart, Impella, and CentriMag. In: Morgan JA, Naka Y (eds.). Surgical Treatment for Advanced Heart Failure. New York: Springer, 2013:93–107.
75. Monteagudo-Vela M, Panoulas V, García-Saez D, de Robertis F, Stock U, Simon AR. Outcomes of heart transplantation in patients bridged with Impella 5.0: Comparison with native chest transplanted patients without preoperative mechanical circulatory support. Artif Organs. 2021;45(3):254–262. PMID: 32936936 https://doi.org/10.1111/aor.13816
76. Tschöpe C, Van Linthout S, Klein O, Mairinger T, Krackhardt F, Potapov EV, et al. Mechanical Unloading by Fulminant Myocarditis: LV-IMPELLA, ECMELLA, BI-PELLA, and PROPELLA Concepts. J Cardiovasc Transl Res. 2019;12(2):116–123. PMID: 30084076 https://doi.org/10.1007/s12265-018-9820-2
77. Amin AP, Spertus JA, Curtis JP, Desai N, Masoudi FA, Bach RG, et al. The Evolving Landscape of Impella Use in the United States Among Patients Undergoing Percutaneous Coronary Intervention With Mechanical Circulatory Support. Circulation. 2020;141(4):273–284. PMID: 31735078 https://doi.org/10.1161/CIRCULATIONAHA.119.044007
78. Chera HH, Nagar M, Chang NL, Morales-Mangual C, Dous G, Marmur JD, et al. Overview of Impella and mechanical devices in cardiogenic shock. Expert Rev Med Devices. 2018;15(4):293–299. PMID: 29600725. https://doi.org/10.1080/17434440.2018.1456334
79. Lima B, Kale P, Gonzalez-Stawinski GV, Kuiper JJ, Carey S, Hall SA. Effectiveness and Safety of the Impella 5.0 as a Bridge to Cardiac Transplantation or Durable Left Ventricular Assist Device. Am J Cardiol. 2016;117(10):1622–1628. PMID: 27061705 https://doi.org/10.1016/j.amjcard.2016.02.038
80. Bansal A, Bhama JK, Patel R, Desai S, Mandras SA, Patel H, et al. Using the Minimally Invasive Impella 5.0 via the Right Subclavian Artery Cutdown for Acute on Chronic Decompensated Heart Failure as a Bridge to Decision. Ochsner J. 2016;16(3):210–216. PMID: 27660567.
81. Cheng R, Tank R, Ramzy D, Azarbal B, Chung J, Esmailian F, et al. Clinical Outcomes of Impella Microaxial Devices Used to Salvage Cardiogenic Shock as a Bridge to Durable Circulatory Support or Cardiac Transplantation. ASAIO J. 2019;65(7):642–648. PMID: 30281541 https://doi.org/10.1097/MAT.0000000000000877
82. Monteagudo-Vela M, Panoulas V, García-Saez D, de Robertis F, Stock U, Simon AR. Outcomes of heart transplantation in patients bridged with Impella 5.0: Comparison with native chest transplanted patients without preoperative mechanical circulatory support. Artif Organs. 2021;45(3):254–262. PMID: 32936936. https://doi.org/10.1111/aor.13816
83. Maini B, Naidu SS, Mulukutla S, Kleiman N, Schreiber T, Wohns D, et al. Real-world use of the Impella 2.5 circulatory support system in complex high-risk percutaneous coronary intervention: the USpella Registry. Catheter Cardiovasc Interv. 2012;80(5):717–725. PMID: 22105829 https://doi.org/10.1002/ccd.23403
84. Chung JS, Emerson D, Ramzy D, Akhmerov A, Megna D, Esmailian F, et al. A New Paradigm in Mechanical Circulatory Support: 100-Patient Experience. Ann Thorac Surg. 2020;109(5):1370–1377. PMID: 31563492 https://doi.org/10.1016/j.athoracsur.2019.08.041
85. Seese L, Hickey G, Keebler ME, Mathier MA, Sultan I, Gleason TG, et al. Direct bridging to cardiac transplantation with the surgically implanted Impella 5.0 device. Clin Transplant. 2020;34(3):e13818. PMID: 32031274 https://doi.org/10.1111/ctr.13818
86. Chieffo A, Ancona MB, Burzotta F, Pazzanese V, Briguori C, Trani C, et al. Observational multicentre registry of patients treated with IMPella mechanical circulatory support device in ITaly: the IMP-IT registry. EuroIntervention. 2020;15(15):e1343–e1350. PMID: 31422925 https://doi.org/10.4244/EIJ-D-19-00428
87. Batsides G, Massaro J, Cheung A, Soltesz E, Ramzy D, Anderson MB. Outcomes of Impella 5.0 in Cardiogenic Shock: A Systematic Review and Meta-analysis. Innovations (Phila). 2018;13(4):254–260. PMID: 30142110 https://doi.org/10.1097/IMI.0000000000000535
88. Patel SM, Lipinski J, Al-Kindi SG, Patel T, Saric P, Li J, et al. Simultaneous Venoarterial Extracorporeal Membrane Oxygenation and Percutaneous Left Ventricular Decompression Therapy with Impella Is Associated with Improved Outcomes in Refractory Cardiogenic Shock. ASAIO J. 2019;65(1):21–28. PMID: 29489461 https://doi.org/10.1097/MAT.0000000000000767
89. Vallabhajosyula S, O’Horo JC, Antharam P, Ananthaneni S, Vallabhajosyula S, Stulak JM, et al. Venoarterial Extracorporeal Membrane Oxygenation With Concomitant Impella Versus Venoarterial Extracorporeal Membrane Oxygenation for Cardiogenic Shock. ASAIO J. 2020;66(5):497–503. PMID: 31335363 https://doi.org/10.1097/MAT.0000000000001039
Review
For citations:
Khubutiya M.Sh., Tokarev A.S., Rubtsov N.V., Israpiev M.V., Khutsishvili L.G., Sagirov M.A., Argir I.A. Mechanical Circulatory Support in Patients with End-Stage Heart Failure: a Literature Review (Part 1). Russian Sklifosovsky Journal "Emergency Medical Care". 2025;14(3):586-600. (In Russ.) https://doi.org/10.23934/2223-9022-2025-14-3-586-600