Preview

Russian Sklifosovsky Journal "Emergency Medical Care"

Advanced search

Remote Ischemic Postconditioning in Case of Traumatic Brain Injury: a Review of Experimental and Clinical Studies

https://doi.org/10.23934/2223-9022-2024-13-1-79-87

Abstract

Relevance Traumatic brain injury (TBI) remains one of the leading causes of morbidity and mortality worldwide. Despite advances in treatment based on understanding of the mechanisms of brain injury after TBI, there is a clear need for new therapeutic strategies. Remote ischemic postconditioning (RIPostC) can be considered as a non-pharmacological technique to reduce secondary brain damage and improve clinical outcomes in patients with TBI.

Aim of study Raising awareness of emergency physicians, neurosurgeons, neurologists, neurophysiologists about the possible use of the concept of RIPostC in patients with TBI.

Material and methods To achieve this goal, the Results of clinical and experimental studies of the use of RIPostC after TBI were analyzed. Literature search was carried out in electronic search systems PubMed (https://pubmed.ncbi.nlm.nih.gov), eLibrary (https://elibrary.ru) using the keywords: “traumatic brain injury”, “remote ischemic conditioning”. A systematic search and selection of publications was performed in January–February 2023. The results of the review included patients with an established diagnosis of traumatic brain injury, followed by the use of RIPostC and animals with experimental modeling of TBI in various ways, followed by RIPostC.

Conclusion The totality of data suggests that the use of the concept of RIPostC as a non-invasive protective technique in the provision of emergency care for patients with TBI may contribute to limiting secondary brain damage. However, the underlying neuroprotective processes are quite complex and need further study. Establishing the relationship of humoral, neurogenic and inflammatory reactions in response to the use of RIPostC in TBI will contribute to understanding the mechanisms of emerging neuroprotection, help ease the course of the disease and improve the clinical outcome.

About the Authors

N. S. Shcherbak
I.P. Pavlov First Saint Petersburg State Medical University
Russian Federation

Natalia S. Shcherbak - Doctor of Biological Sciences, Senior Researcher of the Laboratory of Emergency Cardiology, Research Institute of Cardiovascular Diseases; Senior Researcher of the Laboratory of Circulatory Biophysics, Institute of Biomedicine of the I.P. Pavlov First Saint Petersburg SMU.

6–8, L’va Tolstogo Str., Saint Petersburg 197022



I. A. Voznyuk
I.P. Pavlov First Saint Petersburg State Medical University
Russian Federation

Igor A. Voznyuk - Doctor of Medical Sciences, Professor, Department of Neurology; Deputy Chief Physician for Neurology.

6–8, L’va Tolstogo Str., Saint Petersburg 197022



References

1. Maas AI, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 2008;7(8):728–741. PMID: 18635021 https://doi.org/10.1016/S1474-4422(08)70164-9

2. Godoy DA, Rubiano A, Rabinstein AA, Bullock R, Sahuquillo J. Moderate traumatic brain injury: the grey zone of neurotrauma. Neurocrit Care. 2016;25(2):306–319. PMID: 26927279 https://doi.org/10.1007/s12028016-0253-y

3. Dewan MC, Rattani A, Gupta S, Baticulon RE, Hung YC, Punchak M, et al. Estimating the global incidence of traumatic brain injury. J Neurosurg. 2018;130(4):1080–1097. PMID: 29701556 https://doi.org/10.3171/2017.10.JNS17352

4. Kerr NA, de Rivero Vaccari JP, Abbassi S, Kaur H, Zambrano R, Wu S, et al. Traumatic brain injury-induced acute lung injury: evidence for activation and inhibition of a neural-respiratory-inflammasome axis. J Neurotrauma. 2018;35(17):2067–2076. PMID: 29648974 https://doi.org/10.1089/neu.2017.5430

5. Santistevan JR. Acute limb ischemia: an emergency medicine approach. Emerg Med Clin North Am. 2017;35(4):889–909. PMID: 28987435 https://doi.org/10.1016/j.emc.2017.07.006

6. Bai J, Lyden PD. Revisiting cerebral postischemic reperfusion injury: new insights in understanding reperfusion failure, hemorrhage, and edema. Int J Stroke. 2015;10(2):143–152. PMID: 25598025 https://doi.org/10.1111/ijs.12434

7. Wang HC, Sun CF, Chen H, Chen MS, Shen G, Ma YB, et al. Where are we in the modelling of traumatic brain injury? Models complicated by secondary brain insults. Brain Inj. 2014;28(12):1491–1503. PMID: 25111457 https://doi.org/10.3109/02699052.2014.943288

8. Chakraborty S, Skolnick B, Narayan RK. Neuroprotection Trials in Traumatic Brain Injury. Curr Neurol Neurosci Rep. 2016;16(4):29. PMID: 26883431 https://doi.org/10.1007/s11910-016-0625-x

9. Dirnagl U, Becker K, Meisel A. Preconditioning and tolerance against cerebral ischaemia: from experimental strategies to clinical use. Lancet Neurol. 2009;8(4):398–412. PMID: 19296922 https://doi.org/10.1016/s1474-4422(09)70054-7

10. Shlyakhto EV, Barantsevich EP, Shcherbak NS, Galagudza MM. Molecular Mechanisms of Development of Cerebral Tolerance to Ischemia. Part 1. Annals of the Russian academy of medical sciences. 2012;67(6):42– 50. https://doi.org/10.15690/vramn.v67i6.283

11. Stetler RA, Leak RK, Gan Y, Li P, Zhang F, Hu X, et al. Preconditioning provides neuroprotection in models of CNS disease: paradigms and clinical significance. Prog Neurobiol. 2014; 114: 58–83. PMID: 24389580 https://doi.org/10.1016/j.pneurobio.2013.11.005

12. Heusch G, Bøtker HE, Przyklenk K, Redington A, Yellon D. Remote ischemic conditioning. J Am Coll Cardiol. 2015;65(2):177–195. PMID: 25593060 https://doi.org/10.1016/j.jacc.2014.10.031

13. Mollet I, Marto JP, Mendonça M, Baptista MV, Vieira HLA. Remote but not distant: a review on experimental models and clinical trials in remote ischemic conditioning as potential therapy in ischemic stroke. Mol Neurobiol. 2022;59(1):294–325. PMID: 34686988 https://doi.org/10.1007/s12035-021-02585-6

14. Oxman T, Arad M, Klein R, Avazov N, Rabinowitz B. Limb ischemia preconditions the heart against reperfusion tachyarrhythmia. Am J Physiol. 1997;273(4):H1707–1712. PMID: 9362234 https://doi.org/10.1152/ajpheart.1997.273.4.H1707

15. Cheung MM, Kharbanda RK, Konstantinov IE, Shimizu M, Frndova H, Li J, et al. Randomized controlled trial of the effects of remote ischemic preconditioning on children undergoing cardiac surgery: first clinical application in humans. J Am Coll Cardiol. 2006;47(11): 2277–2282. PMID: 16750696 https://doi.org/10.1016/j.jacc.2006.01.066

16. Shcherbak NS, Galagudza MM, Kuz’menkov AN, Ovchinnikov DA, Yukina GYu, Barantsevich YeR, et al. Morpho-Functional Changes of Hippocampal CA1 Area in Mongolian Gerbils After Ischemic Postconditioning. Morphology. 2012;142(5):12–16. (In Russ.)

17. Shcherbak N, Popovetsky M, Galagudza M, Barantsevitch E, Shlyakhto E. The infarct-limiting effect of cerebral ischaemic postconditioning in rats depends on the middle cerebral artery branching pattern. Int J Exp Pathol. 2013;94(1):34–38. PMID: 23198989 https://doi.org/10.1111/iep.12003

18. Shcherbak NS, Yukina GYu, Sukhorukova EG, Thomson VV. Effect of ischemic postconditioining on reaction of neocortex microglia after global brain ischemia in rats. Regional Blood Circulation and Microcirculation. 2020;19(2):59–66. (In Russ.) https://doi.org/10.24884/16826655-2020-19-2-59-66

19. Saxena P, Newman MA, Shehatha JS, Redington AN, Konstantinov IE. Remote ischemic conditioning: evolution of the concept, mechanisms, and clinical application. J Card Surg. 2010;25(1):127–134. PMID: 19549044 https://doi.org/10.1111/j.1540-8191.2009.00820.x

20. Basalay MV, Davidson SM, Gourine AV, Yellon DM. Neural mechanisms in remote ischaemic conditioning in the heart and brain: mechanistic and translational aspects. Basic Res Cardiol. 2018;113(4):25. PMID: 29858664 https://doi.org/10.1007/s00395-018-0684-z

21. Chen G, Thakkar M, Robinson C, Doré S. Limb remote ischemic conditioning: mechanisms, anesthetics, and the potential for expanding therapeutic options. Front Neurol. 2018;9:40. PMID: 29467715 https://doi.org/10.3389/fneur.2018.00040

22. Ren C, Yan Z, Wei D, Gao X, Chen X, Zhao H. Limb remote ischemic postconditioning protects against focal ischemia in rats. Brain Res. 2009;1288:88-94. PMID: 19631625 https://doi.org/10.1016/j.brainres.2009.07.029

23. England TJ, Hedstrom A, O’Sullivan S, Donnelly R, Barrett DA, Sarmad S, et al. RECAST (Remote Ischemic Conditioning After Stroke Trial): A pilot randomized placebo controlled phase II trial in acute ischemic stroke. Stroke. 2017;48(5):1412–1415. PMID: 28265014 https://doi.org/10.1161/STROKEAHA.116.016429

24. England TJ, Hedstrom A, O’Sullivan SE, Woodhouse L, Jackson B, Sprigg N, et al. Remote ischemic conditioning after stroke trial 2: A phase IIb randomized controlled trial in hyperacute stroke. J Am Heart Assoc. 2019;8(23):013572. PMID: 31747864 https://doi.org/10.1161/jAHA.119.013572

25. Joseph B, Pandit V, Zangbar B, Kulvatunyou N, Khalil M, Tang A, et al. Secondary brain injury in trauma patients: the effects of remote ischemic conditioning. J Trauma Acute Care Surg. 2015;78(4):698–703. PMID: 25742251 https://doi.org/10.1097/TA.0000000000000584

26. Di Battista AP, Buonora JE, Rhind SG, Hutchison MG, Baker AJ, Rizoli SB, et al. Blood biomarkers in moderate-to-severe traumatic brain injury: potential utility of a multi-marker approach in characterizing outcome. Front Neurol. 2015:6:110. PMID: 26074866 https://doi.org/10.3389/fneur.2015.00110

27. Hodoodi F, Allah-Tavakoli M, Tajik F, Fatemi I, Moghadam Ahmadi A. The effect of head cooling and remote ischemic conditioning on patients with traumatic brain injury. iScience. 2021;24(6):102472. PMID: 34169235 https://doi.org/10.1016/j.isci.2021.102472

28. Su YS, Schuster JM, Smith DH, Stein SC. Cost-efectiveness of biomarker screening for traumatic brain injury. J Neurotrauma. 2019;36(13):2083– 2091. PMID: 30547708 https://doi.org/10.1089/neu.2018.6020

29. Jones A, Jarvis P. Review of the potential use of blood neuro-biomarkers in the diagnosis of mild traumatic brain injury. Clin Exp Emerg Med. 2017;4(3):121–127. PMID: 29026884 https://doi.org/10.15441/ceem.17.226

30. Morganti-Kossmann MC, Rancan M, Stahel PF, Kossmann T. Inflammatory response in acute traumatic brain injury: a double-edged sword. Curr Opin Crit Care. 2002;8(2):101–105. PMID: 12386508 https://doi.org/10.1097/00075198-200204000-00002

31. Ribbons KA, Thompson JH, Liu X, Pennline K, Clark DA, Miller MJ. Anti-inflammatory properties of interleukin-10 administration in hapten-induced colitis. Eur J Pharmacol. 1997;323(2–3):245–254. PMID: 9128846 https://doi.org/10.1016/s0014-2999(97)00017-4

32. Thelin EP, Zeiler FA, Ercole A, Mondello S, Büki A, Bellander BM, et al. Serial sampling of serum protein biomarkers for monitoring human traumatic brain injury dynamics: a systematic review. Front Neurol. 2017;8:300. PMID: 28717351 https://doi.org/10.3389/fneur.2017.00300

33. Posti JP, Dickens AM, Orešič M, Hyötyläinen T, Tenovuo O. Metabolomics profiling as a diagnostic tool in severe traumatic brain injury. Front Neurol. 2017;8:398. PMID: 28868043 https://doi.org/10.3389/fneur.2017.00398eCollection 2017.

34. Bøtker HE, Kharbanda R, Schmidt MR, Bøttcher M, Kaltoft AK, Terkelsen CJ, et al. Remote ischaemic conditioning before hospital admission, as a complement to angioplasty, and effect on myocardial salvage in patients with acute myocardial infarction: a randomised trial. Lancet. 2010;375(9716):727–734. PMID: 20189026 https://doi.org/10.1016/s0140-6736(09)62001-8

35. Leinonen JS, Ahonen JP, Lönnrot K, Jehkonen M, Dastidar P, Molnár G, et al. Low plasma antioxidant activity is associated with high lesion volume and neurological impairment in stroke. Stroke. 2000;31(1):33–39. PMID: 10625712 https://doi.org/10.1161/01.str.31.1.33

36. Wang T, Zhou YT, Chen XN, Zhu AX, Wu BH. Remote ischemic postconditioning protects against gastric mucosal lesions in rats. World J Gastroenterol. 2014;20(28):9519–9527. PMID: 25071347 https://doi.org/10.3748/wjg.v20.i28.9519

37. Hess DC. (ed.). Cell Therapy for Brain Injury. Springer Cham; 2015. https://doi.org/10.1007/978-3-319-15063-5

38. Lenzlinger PM, Morganti-Kossmann MC, Laurer HL, McIntosh TK. The duality of the inflammatory response to traumatic brain injury. Mol Neurobiol. 2001;24(1–3):169–181. PMID: 11831551 https://doi.org/10.1385/MN:24:1-3:169

39. Bian Y, Zhang P, Xiong Y, Xu F, Zhu S, Tang Z, et al. Application of the APACHE II score to assess the condition of patients with critical neurological diseases. Acta Neurol Belg. 2015;115(4):651–656. PMID: 25567549 https://doi.org/10.1007/s13760-014-0420-x

40. Sandweiss AJ, Azim A, Ibraheem K, Largent-Milnes TM, Rhee P, Vanderah TW, et al. Remote ischemic conditioning preserves cognition and motor coordination in a mouse model of traumatic brain injury. J Trauma Acute Care Surg. 2017;83(6):1074–1081. PMID: 28609381 https://doi.org/10.1097/TA.0000000000001626

41. Pandit V, Khan M, Zakaria ER, Largent-Milnes TM, Hamidi M, O’Keeffe T, et al. Continuous remote ischemic conditioning attenuates cognitive and motor deficits from moderate traumatic brain injury. J Trauma Acute Care Surg. 2018;85(1):48–53. PMID: 29443855 https://doi.org/10.1097/TA.0000000000001835

42. Saber M, Rice AD, Christie I, Roberts RG, Knox KS, Nakaji P, et al. Remote ischemic conditioning reduced acute lung injury after traumatic brain injury in the mouse. Shock. 2021;55(2):256–267. PMID: 32769821 https://doi.org/10.1097/SHK.0000000000001618

43. Shah EJ, Gurdziel K, Ruden DM. Mammalian models of traumatic brain injury and a place for drosophila in TBI research. Front Neurosci. 2019;13:409. PMID: 31105519 https://doi.org/10.3389/fnins.2019.00409eCollection 2019.

44. Kim YH, Yoon DW, Kim JH, Lee JH, Lim CH. Effect of remote ischemic post-conditioning on systemic inflammatory response and survival rate in lipopolysaccharide-induced systemic inflammation model. J Inflamm (Lond). 2014;11:16. PMID: 24904237 https://doi.org/10.1186/14769255-11-16

45. Gonzalez NR, Hamilton R, Bilgin-Freiert A, Dusick J, Vespa P, Hu X, et al. Cerebral hemodynamic and metabolic effects of remote ischemic preconditioning in patients with subarachnoid hemorrhage. Acta Neurochir Suppl. 2013;115:193–198. PMID: 22890668 https://doi.org/10.1007/9783-7091-1192-5_36

46. Madathil SK, Evans HN, Saatman KE. Temporal and regional changes in IGF-1/IGF-1R signaling in the mouse brain after traumatic brain injury. J Neurotrauma. 2010;27(1):95–107. PMID: 19751099 https://doi.org/10.1089/neu.2009.1002

47. Kobeissy FH. (ed.). Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects. Boca Raton (FL): CRC Press/Taylor&Francis; 2015.


Review

For citations:


Shcherbak N.S., Voznyuk I.A. Remote Ischemic Postconditioning in Case of Traumatic Brain Injury: a Review of Experimental and Clinical Studies. Russian Sklifosovsky Journal "Emergency Medical Care". 2024;13(1):79-87. https://doi.org/10.23934/2223-9022-2024-13-1-79-87

Views: 505


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-9022 (Print)
ISSN 2541-8017 (Online)