Immunological Aspects of the Pathogenesis of Cicatricial Tracheal Stenosis
https://doi.org/10.23934/2223-9022-2023-12-3-428-434
Abstract
Cicatricial tracheal stenosis is a fairly common complication that occurs after tracheal intubation or tracheostomy. However, critical tracheal stenosis is a rare case, sometimes not associated with trauma, and is probably due to the peculiarities of the patient’s immune response during the development of stenosis. In this regard, the study of the immune mechanisms of the development of inflammation in the upper respiratory tract is a very relevant and promising direction. This review is devoted to the analysis of the immunological mechanisms of tracheal stricture formation, and presents modern data on the immunopathogenesis of the disease.
Clarification of some pathogenetic mechanisms of the immune response during the formation of tracheal strictures of various origins can help in identifying laboratory markers as risk factors for tracheal stricture and timely prevention of such complications.
About the Authors
E. S. VladimirovaRussian Federation
Elizaveta S. Vladimirova - Doctor of Medical Sciences, Scientific Consultant, Thoracic Surgical Department,
3, B. Sukharevskaya Sq., 129090, Moscow
V. P. Nikulina
Russian Federation
Valentina P. Nikulina - Candidate of Medical Sciences, Senior Researcher, Laboratory of Clinical Immunology,
3, B. Sukharevskaya Sq., 129090, Moscow
M. A. Godkov
Russian Federation
Mikhail A. Godkov - Doctor of Medical Sciences, Senior Researcher, Department of Laboratory Diagnostics,
3, B. Sukharevskaya Sq., 129090, Moscow
E. A. Kasholkina
Russian Federation
Elena A. Kasholkina - Specialist in Clinical Laboratory Diagnostics,
3, B. Sukharevskaya Sq., 129090, Moscow
References
1. Streitz JM Jr, Shapshay SM. Airway injury after tracheotomy and endotracheal intubation. Surg Clin North Am. 1991;71(6):1211–1230. https://doi.org/10.1016/s0039-6109(16)45586-6 PMID: 1948570
2. Fernandez-Bussy S, Mahajan B, Folch E, Caviedes I, Guerrero J, Majid A. Tracheostomy Tube Placement: Early and Late Complications. J Bronchology Interv Pulmonol. 2015;22(4):357–364. https://doi.org/10.1097/LBR.0000000000000177 PMID: 26348694
3. Norwood S, Vallina VL, Short K, Saigusa M, Fernandez LG, McLarty JW. Incidence of tracheal stenosis and other late complications after percutaneous tracheostomy. Ann Surg. 2000;232(2):233–241. https://doi.org/10.1097/00000658-200008000-00014 PMID: 10903603
4. Kim SS, Khalpey Z, Hsu C, Little AG. Changes in tracheostomyand intubation-related tracheal stenosis: implications for surgery. Ann Thorac Surg. 2017;104(3):964–970. https://doi.org/10.1016/j.athoracsur.2017.03.063 PMID: 28619544
5. Parshin VD, Porkhanov VA. Khirurgiya trakhei s atlasom operativnoy khirurgii. Moscow: Al’di-Print Publ.; 2010. (In Russ.).
6. Parshin VD, Koroleva IM, Mishchenko MA, Parshin VV. Diagnosis and treatment of acquired tracheomalacia in patients with cicatrical tracheal stenosis. Pirogov Russian Journal of Surgery. 2016;(8):73–82. (In Russ.) https://doi.org/10.17116/hirurgia2016873-82
7. Mark EJ, Meng F, Kradin RL, Mathisen DJ, Matsubara O. Idiopathic tracheal stenosis: a clinicopathologic study of 63 cases and comparison of the pathology with chondromalacia. Am J Surg Pathol. 2008;32(8):1138– 1143. https://doi.org/10.1097/PAS.0b013e3181648d4a PMID: 18545144
8. Maldonado F, Loiselle A, Depew ZS, Edell ES, Ekbom DC, Malinchoc M, et al. Idiopathic subglottic stenosis: an evolving therapeutic algorithm. Laryngoscope. 2014;124(2):498-503. https://doi.org/10.1002/lary.24287 PMID: 23818139
9. Nakagishi Y, Morimoto Y, Fujita M, Ozeki Y, Maehara T, Kikuchi M. Rabbit model of airway stenosis induced by scraping of the tracheal mucosa. Laryngoscope. 2005;115(6):1087–1092. https://doi.org/10.1097/01.MLG.0000163105.86513.6D PMID: 15933527
10. Eyre D. Collagen of articular cartilage. Arthritis Res. 2002;4(1):30–35. https://doi.org/10.1186/ar380 PMID: 11879535
11. Bozhokin MS, Bozhkova SA, Netylko GI. Possibilities of Current Cellular Technologies for Articular Cartilage Repair (Analytical Review). Traumatology and Orthopedics of Russia. 2016;22(3):122–134. https://doi.org/10.21823/2311-2905-2016-22-3-122-134
12. Bozhokin MS, Bozhkova SA, Netylko GI, Rumakin VP, Nakonechnyi DG, Chepurnenko MN. Morfo-funktsional characteristic of hondroregeneratorny process for аrticular cartilage injuries. Mezhdunarodnyy zhurnal prikladnykh i fundamental’nykh issledovaniy. 2017;(8–2):302–306. (In Russ.)
13. Eyre DR, Weis MA, Wu J-J. Articular cartilage collagen: an irreplaceable framework? Eur Cells Mater. 2006;12:57–63. PMID: 17083085 https://doi.org/10.22203/ecm.v012a07
14. Krishnan Y, Grodzinsky AJ. Cartilage diseases. Matrix Biol. 2018;71– 72:51–69. https://doi.org/10.1016/j.matbio.2018.05.005 PMID: 29803938
15. Kurgansky IS, Makhutov VN, Lepekhova SA. The methods for the treatment and prevention of cicatricalstenoses of tracheal. Vestnik OtoRino-Laringologii. 2016;81(1):66–71. (In Russ.) https://doi.org/10.17116/otorino201681166-71
16. Nedz’ved’ MK, Tatur AA, Leonovich SI, Nerovnya AM. Morfologicheskie izmeneniya v trakhee pri postintubatsionnom rubtsovom stenoze. Medical Journal (BSMU). 2008;(1):43–46. (In Russ.).
17. Sime PJ, O’Reilly KM. Fibrosis of the lung and other tissues: new concepts in pathogenesis and treatment. Clin Immunol. 2001;99(3):308– 319. https://doi.org/10.1006/clim.2001.5008 PMID: 11358425
18. Fajgenbaum DC, June CH. Cytokine Storm. N Engl J Med. 2020;383(23):2255–2273. https://doi.org/10.1056/NEJMra2026131 PMID: 33264547
19. Wei P, Huang Z, Gan L, Li Y, Qin C, Liu G. Nintedanib ameliorates tracheal stenosis by activating HDAC2 and suppressing IL-8 and VEGF in rabbit. Am J Transl Res. 2020;12(8):4739–4748. eCollection 2020. PMID: 32913546
20. Chousterman BG, Swirski FK, Weber GF. Cytokine storm and sepsis disease pathogenesis. Semin Immunopathol. 2017;39(5):517–528. https://doi.org/10.1007/s00281-017-0639-8 PMID: 28555385
21. Lin JX, Leonard WJ. Fine-Tuning Cytokine Signals. Annu Rev Immunol. 2019;37:295–324. https://doi.org/10.1146/annurev-immunol-042718041447 PMID: 30649989
22. Oppenheim JJ. The Future of the Cytokine Discipline. Cold Spring Harb Perspect Biol. 2018;10(9):a028498. https://doi.org/10.1101/cshperspect.a028498 PMID: 28847901
23. Weledji EP. Citocynes and metabolic response to surgery. J Clin Cell Immunol. 2014;5(2). https://doi.org/10.4172/2155-9899.1000197 Available at: https://www.researchgate.net/publication/341265387_Cytokines_and_the_Metabolic_Response_to_Surgery [Accessed 04.10. 2021]
24. Il’ina AE, Stanislav ML, Denisov LN, Nasonov EL. Interleikin 1 kak mediator vospaleniya i terapevticheskaya mishen’’. Rheumatology Science and Practice. 2011;49(5):62–71. (In Russ.) https://doi. org/10.14412/1995-4484-2011-1463.
25. Thielen NGM, van der Kraan PM, van Caam APM. TGFβ/BMP Signaling Pathway in Cartilage Homeostasis. Cells. 2019;8(9):969. https://doi.org/10.3390/cells8090969 PMID: 31450621
26. Blaney Davidson EN, Remst DF, Vitters EL, van Beuningen HM, Blom AB, Goumans MJ, et al. Increase in ALK1/ALK5 ratio as a cause for elevated MMP-13 expression in osteoarthritis in humans and mice. J Immunol. 2009;182(12):7937–7945. https://doi.org/10.4049/jimmunol.0803991 PMID: 19494318
27. Vitkovskiy YuA. Vliyanie interleykinov 4 i 10 na sistemu gemostaza in vitro. Immunologiya. 2004;(1):43–46. (In Russ.).
28. Li M, Jia J, Li S, Cui B, Huang J, Guo Z, et al. Exosomes derived from tendon stem cells promote cell proliferation and migration through the TGF β signal pathway. Biochem Biophys Res Commun. 2021;536:88–94. https://doi.org/10.1016/j.bbrc.2020.12.057 PMID: 33370718
29. Vander Ark A, Cao J, Li X. TGF-β receptors: In and beyond TGFβ signaling. Cell Signal. 2018;52:112–120. https://doi.org/10.1016/j.cellsig.2018.09.002 PMID: 30184463
30. Ge Y, Huang M, Yao YM. Autophagy and proinflammatory cytokines: Interactions and clinical implications. Cytokine Growth Factor Rev. 2018;43:38–46. https://doi.org/10.1016/j.cytogfr.2018.07.001 PMID: 30031632
31. Garcia-Rendueles AR, Rodrigues JS, Garcia-Rendueles ME, SuarezFariña M, Perez-Romero S, Barreiro F, et al. Rewiring of the apoptotic TGF-β-SMAD/NFκB pathway through an oncogenic function of p27 in human papillary thyroid cancer. Oncogene. 2017;36(5):652–666. https://doi.org/10.1038/onc.2016.233 PMID: 27452523
32. Simbirtsev AS, Totolyan AA. Tsitokiny v laboratornoy diagnostike. Infectious Diseases: News, Views, Education. 2015;2(11):82–98. (In Russ.).
33. Crecente-Campo J, Borrajo E, Vidal A, Garcia-Fuentes M. New scaffolds encapsulating TGF-β3/BMP-7 combinations driving strong chondrogenic differentiation. Eur J Pharm Biopharm. 2017;114:69–78. https://doi.org/10.1016/j.ejpb.2016.12.021 PMID: 28087378
34. Kronenberg HM. Developmental regulation of the growth plate. Nature. 2003;423(6937):332–336. https://doi.org/10.1038/nature01657 PMID: 12748651
35. Huang Z, Wei P, Gan L, Li W, Zeng T, Qin C, et al. Protective effects of different anti-inflammatory drugs on tracheal stenosis following injury and potential mechanisms. Mol Med Rep. 2021;23(5):314. https://doi.org/10.3892/mmr.2021.11953 PMID: 34240225
36. Greaves NS, Asheroft KJ, Baguneid M, Bayat A. Current understanding of molecular and cellular mechanisms in fibroplasia and angiogenesis during acute wound healing. J Dermatal Sci. 2013;72(3):206–217. https://doi.org/10.1016/j.jdermsci.2013.07.008 PMID: 23958517
37. Maher TM. Pirfenidone in idiopathic pulmonary fibrosis. Drugs Today (Barc). 2010;46(7):473–482. https://doi.org/10.1358/dot.2010.46.7.1488336 PMID: 20683502
38. Esakov IuS, Dubova EA, Zhestkov KG, Shchegolev AI. Morphologic changes by postintubation stenosis of trachea. Pirogov Russian Journal of Surgery. 2010;(2):60–63. (In Russ.).
39. Yanagawa Y, Hiraide S, Iizuka K. Isoform-specific regulation of transforming growth factor-β mRNA expression in macrophages in response to adrenoceptor stimulation. Microbiol Immunol. 2016;60(1):56–63. https://doi.org/10.1111/1348-0421.12344 PMID: 26612065
40. Li LH, Xu MP, Gan LM, Li Y, Liang YL, Li WT, et al. Effect of low dose erythromycin on the proliferation of granulation tissue after tracheal injury. Zhonghua Yi Xue Za Zhi. 2017;97(10):777–781. (In Chinese) https://doi.org/10.3760/cma.j.issn.0376-2491.2017.10.012 PMID: 28316160
41. Zhang J, Li Q, Bai C, Han Y, Huang Y. Inhalation of TGF-beta1 antibody: A new method to inhibit the airway stenosis induced by the endobronchial tuberculosis. Med Hypotheses. 2009;73(6):1065–1066. https://doi.org/10.1016/j.mehy.2009.04.037 PMID: 19819641
42. Lee YC, Hung MH, Liu LY, Chang KT, Chou TY, Wang YC, et al. The roles of transforming growth factor-beta (1) and vascular endothelial growth factor in the tracheal granulation formation. Pulm Pharmacol Ther. 2011;24(1):23–31. https://doi.org/10.1016/j.pupt.2010.10.016 PMID: 21056681
43. Morikawa M, Derynck R, Miyazono K. TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol. 2016;8(5):a021873. https://doi.org/10.1101/cshperspect.a021873 PMID: 27141051
44. Derynck R, Budi E. Specificity, versatility, and control of TGF-β family signaling. Sci Signal. 2019;12(570):eaav5183. https://doi.org/10.1126/scisignal.aav5183 PMID: 30808818
45. Shao T, Song P, Hua H, Zhang H, Sun X, Kong Q, et al. Gamma synuclein is a novel Twist1 target that promotes TGF-β-induced cancer cell migration and invasion. Cell Death Dis. 2018;9(6):625. https://doi.org/10.1038/s41419-018-0657-z PMID: 29795373
46. Rockey DC, Bell PD, Hill JA. Fibrosis-a common pathway to organ injury and failure. N Engl J Med. 2015;372(12):1138–1149. PMID: 25785971 https://doi.org/10.1056/NEJMra1300575
47. Shiromizu CM, Jancic CC. Review. gammadelta T Lymphocytes: An Effector Cell in Autoimmunity and Infection. Front Immunol. 2018;9:2389. https://doi.org/10.3389/fimmu.2018.02389 eCollection 2018. PMID: 30386339
48. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelialmesenchymal transition of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 2014;15(3):178–196. https://doi.org/10.1038/nrm3758 PMID: 24556840
49. Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214(2):199–210. https://doi.org/10.1002/path.2277 PMID: 18161745
50. Yang J, Weinberg RA. Epitelial-Mesenchymal Transition: at the Crossroads of Development and Tumor Metastasis. Dev Cell. 2002;14(6):818–829. https://doi.org/10.1016/j.devcel.2008.05.009 PMID: 18539112
51. Xu J, Lamouille S, Derynck R. TGF –induced epithelial to mesenchymal Transition. Сell Res. 2009;19(2):156–172. https://doi.org/10.1038/cr.2009.5 PMID: 19153598
52. Datta A, Scotton CJ, Chambers RC. Novel therapeutic approaches for pulmonary fibrosis. Br J Phamacol. 2011;163(1):141–172. https://doi.org/10.1111/j.1476-5381.2011.01247 PMID: 21265830
53. Motz KM, Gelbard A. The role of inflammatory cytokines in the development of idiopathic subglottic stenosis. Transl Cancer Res. 2020;9(3):2102–2107. https://doi.org/10.21037/tcr.2019.12.37 PMID: 35117565
54. Griffits M, Ojeh N, Livingstone R, Price R, Navsaria H. Survival of Apligraf in acute human wounds. Tissuee Engl. 2004;10(7–8):1180– 1195. https://doi.org/10.1089/ten.2004.10.1180 PMID: 15363174
55. Zhao J, Shi W, Wang YL, Chen H, Bringas P Jr, Datto MB, et al. Smad3 deficiency attenuates bleomycin-induced pulmonary fibrosis in mice. Am J Physiol Lung Cell Mol Physiol. 2002;282(3):L585–593. https://doi.org/10.1152/ajplung.00151.2001 PMID: 11839555
56. Roberts AB, Russo A, Felici A, Flanders KC. Smad3: a key player in pathogenetic mechanisms dependent on TGF-beta. Ann N Y Acad Sci. 2003;995:1–10. https://doi.org/10.1111/j.1749-6632.2003.tb03205.x PMID: 12814934
57. Elmallah RK, Cherian JJ, Jauregui JJ, Pierce TP, Beaver WB, Mont MA. Genetically modified chondrocytes expressing TGF-β1: a revolutionary treatment for articular cartilage damage? Expert Opin Biol Ther. 2015;15(3):455–464. https://doi.org/10.1517/14712598.2015.1009886 PMID: 25645308
58. Gaffen SL, Jain R, Garg AV, Cua DJ. The IL-23-IL-17 immune axis: from mechanisms to therapeutic testing. Nat Rev Immunol. 2014;14(9):585– 600. https://doi.org/10.1038/nri3707 PMID: 25145755
59. Zhang Y, Alexander PB, Wang XF. TGF-β Family Signaling in the Control of Cell Proliferation and Survival. Cold Spring Harb Perspect Biol. 2017;9(4):a022145. https://doi.org/10.1101/cshperspect.a022145 PMID: 27920038
60. Morrison RJ, Katsantonis NG, Motz KM, Hillel AT, Garrett CG, Netterville JL, et al. Pathologic fibroblasts in idiopathic subglottic stenosis amplify local inflammatory signals. Otolaryngol Head Neck Surg. 2019;160(1):107–115. https://doi.org/10.1177/0194599818803584 PMID: 30322354
61. Hillel AT, Namba D, Ding D, Pandian V, Elisseeff JH, Horton MR. An in situ, in vivo murine model for the study of laryngotracheal stenosis. JAMA Otolaryngol Head Neck Surg. 2014;140(10):961–966. https://doi.org/10.1001/jamaoto.2014.1663 PMID: 25144860
Review
For citations:
Vladimirova E.S., Nikulina V.P., Godkov M.A., Kasholkina E.A. Immunological Aspects of the Pathogenesis of Cicatricial Tracheal Stenosis. Russian Sklifosovsky Journal "Emergency Medical Care". 2023;12(3):428-434. https://doi.org/10.23934/2223-9022-2023-12-3-428-434