Патогенетические механизмы органной дисфункции при тяжелой сочетанной травме
https://doi.org/10.23934/2223-9022-2023-12-1-92-98
Аннотация
Тяжелая сочетанная травма на протяжении многих лет представляет собой большую демографическую и медицинскую проблему, являясь причиной высокой смертности трудоспособного населения. Одномоментное образование массива разрушенных тканей «запускает» системную воспалительную реакцию, которая на фоне травматического и геморрагического шока приводит к дисбалансу иммунной реактивности и предрасполагает к развитию септических осложнений. В обзоре представлены основные понятия о посттравматических реакциях и нарушениях баланса клеточных и гуморальных иммунных механизмов, приводящих к развитию осложнений.
Об авторе
Г. В. БулаваРоссия
Булава Галина Владимировна, доктор медицинских наук, научный консультант
129090, Москва, Б. Сухаревская пл., д. 3
Список литературы
1. World Health Organization. Global Health Estimates: Life expectancy and leading causes of death and disability. Deaths by cause, age and sex. Available at: http://www.who.int/healthinfo/global_burden_disease/estimates/en/ index1.html [Accessed 21 february 2023]
2. World Health Organization. Violence and injuries: the facts. Geneva, Switzerland: World Health Organization; 2010.
3. Lord JM, Midwinter MJ, Chen YF, Belli A, Brohi K, Kovacs EJ, et al. The systemic immune response to trauma: an overview of pathophysiology and treatment. Lancet. 2014;384(9952):1455–1465. PMID: 25390327 https://doi. org/10.1016/S0140-6736(14)60687-5
4. Sauaia A, Moore FA, Moore EE. Postinjury inflammation and organ dysfunction. Crit Care Clin. 2017;33(1):167–191. PMID: 27894496 https://doi. org/10.1016/j.ccc.2016.08.006
5. Gabbe BJ, Simpson PM, Cameron PA, Ponsford J, Lyons RA, Collie A, et al. Long-term health status and trajectories of seriously injured patients: a population-based longitudinal study. PLoS Med. 2017;14(7):e1002322. PMID: 28678814 https://doi.org/10.1371/journal.pmed.1002322 eCollection 2017 Jul.
6. Callcut RA, Wakam G, Conroy AS, Kornblith LZ, Howard BM, Campion EM, et al. Discovering the truth about life after discharge: Long-term traumarelated mortality. J Trauma Acute Care Surg. 2016;80(2):210–217. PMID: 26606176 https://doi.org/10.1097/TA.0000000000000930
7. Tonglet ML, Greiffenstein P, Pitance F, Degesves S. Massive bleeding following severe blunt trauma: the first minutes that can change everything. Acta Chir Belg. 2016;116(1):11–15. PMID: 27385134 https://doi.org/10.1080/ 00015458.2015.1136488
8. Vargas M, García A, Caicedo Y, Parra MW, Ordoñez CA. Vargas M, et al. Damage control in the intensive care unit: what should the intensive care physician know and do? Colomb Med (Cali). 2021;52(2):e4174810. PMID: 34908625 https://doi.org/10.25100/cm.v52i2.4810
9. Tien HC, Spencer F, Tremblay LN, Rizoli SB, Brenneman FD. Preventable deaths from hemorrhage at a level I Canadian trauma center. J Trauma. 2007;62(1):142–146. PMID: 17215745 https://doi.org/10.1097/01. ta.0000251558.38388.47
10. Schäfer N, Driessen A, Fröhlich M, Stürmer EK, Maegele M; TACTIC partners. Diversity in clinical management and protocols for the management of major bleeding of trauma patients across European level 1 Trauma Centres. Scand J Trauma Resusc Emerg Med. 2015;23:74. PMID: 26428070 https://doi. org/10.1186/s13049-015-0147-6
11. Chin-Yee IH, Gray-Statchuk L, Milkovich S, Ellis CG. Transfusion of stored red blood cells adhere in the rat microvasculature. Transfusion. 2009;49(11):2304– 2310. PMID: 19624601 https://doi.org/10.1111/j.1537-2995.2009.02315.x
12. D’Alessandro A, Liumbruno G, Grazzini G, Zolla L. Red blood cell storage: the story so far. Blood Transfusion. 2010;8(2):82–88. PMID: 20383300 https://doi. org/10.2450/2009.0122-09
13. Jy W, Ricci M, Shariatmadar S, Gomez-Marin O, Horstman LH, Ahn YS. Microparticles in stored red blood cells as potential mediators of transfusion complications. Transfusion. 2011;51(4):886–893. PMID: 21496051 https:// doi.org/10.1111/j.1537-2995.2011.03099.x
14. Curry N, Brohi K. Surgery in Traumatic Injury and Perioperative Considerations. Semin Thromb Hemost. 2020;46(1):73–82. PMID: 31563126 https://doi.org/10.1055/s-0039-1697932
15. Lenz A, Franklin GA, Cheadle WG. Systemic inflammation after trauma. Injury. 2007;38(12):1336–1345. PMID: 18048040 https://doi.org/10.1016/ j.injury.2007.10.003
16. Агаджанян В.В. (ред.) Политравма. Септические осложнения. Новосибирск: Наука; 2005.
17. Wafaisade AP, Lefering RMD, Bouillon BMD, Sakka SGMD, Thamm OCMD, Paffrath TMD, et al.; Trauma Registry of the German Society for Trauma Surgery. Epidemiology and risk factors of sepsis after multiple trauma: An analysis of 29,829 patients from the Trauma Registry of the German Society for Trauma Surgery. Crit Care Med. 2011;39(4):621–628. PMID: 21242798 https://doi.org/10.1097/CCM.0b013e318206d3df
18. Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 2010;464(7285):104–107. PMID: 20203610 https://doi.org/10.1038/ nature08780
19. Pugin J. How tissue injury alarms the immune system and causes a systemic inflammatory response syndrome. Ann Intensive Care. 2012;2(1):27. PMID: 22788849 https://doi.org/10.1186/2110-5820-2-27
20. Manson J, Thiemermann C, Brohi K. Trauma alarmins as activators of damage-induced inflammation. Brit J Surg. 2012;99(Suppl 1):12–20. PMID: 22441851 https://doi.org/0.1002/bjs.7717
21. Liew PX, Kubes P. The Neutrophil’s Role During Health and Disease. Physiol Rev. 2019;99(2):1223–1248. PMID: 30758246 https://doi.org/10.1152/ physrev.00012.2018
22. Rosales C. Neutrophils at the crossroads of innate and adaptive immunity. J Leukoc Biol. 2020;108(1):377–396. PMID: 32202340 https://doi.org/10.1002/ JLB.4MIR0220-574RR
23. Arango Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014;5:491. PMID: 25339958 https://doi.org/10.3389/fimmu.2014.00491 eCollection 2014.
24. Huber-Lang M, Lambris JD, Ward PA. Innate immune responses to trauma. Nat Immunol. 2018;19(4):327–341. PMID: 29507356 https://doi.org/10.1038/ s41590-018-0064-8
25. Nunnari J, Suomalainen A. Mitochondria: in sickness and in health. Cell. 2012;148(6):1145–1159. PMID: 22424226 https://doi.org/10.1016/ j.cell.2012.02.035
26. Galluzzi L, Kepp O, Trojel-Hansen C, Kroemer G. Mitochondrial control of cellular life, stress, and death. Circulation Research. 2012;111(9):1198–1207. PMID: 23065343 https://doi.org/10.1161/CIRCRESAHA.112.268946
27. West AP, Shadel GS. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Revs Immunol. 2017;17(6):363–375. PMID: 28393922 https://doi.org/10.1038/nri.2017.21
28. Nakahira K, Hisata S, Choi AM. The Roles of Mitochondrial Damage-Associated Molecular Patterns in Diseases. Antioxid Redox Signal. 2015;23(17):1329– 1350. PMID: 26067258 https://doi.org/10.1089/ars.2015.6407
29. Boyapati RK, Rossi AG, Satsangi J, Ho GT. Gut mucosal DAMPs in IBD: from mechanisms to therapeutic implications. Mucosal Immunol. 2016;9(3):567– 582. PMID: 26931062 https://doi.org/10.1038/mi.2016.14
30. Krychtiuk KA, Ruhittel S, Hohensinner PJ, Koller L, Kaun C, Lenz M, et al. Mitochondrial DNA and Toll-Like Receptor-9 Are Associated with Mortality in Critically Ill Patients. Crit Care Med. 2015;43(12):2633–2641. PMID: 26448617 https://doi.org/10.1097/CCM.0000000000001311
31. Nakahira K, Kyung SY, Rogers AJ, Gazourian L, Youn S, Massaro AF, et al. Circulating mitochondrial DNA in patients in the ICU as a marker of mortality: derivation and validation. PLoS Med. 2013;10(12):e1001577. PMID: 24391478 https://doi.org/10.1371/journal.pmed.1001577
32. Хубутия М.Ш., Шабанов А.К., Скулачев М.В., Булава Г.В., Савченко И. М., Гребенников О.А., и др. Митохондриальная и ядерная ДНК у пострадавших с тяжелой сочетанной травмой. Общая реаниматология. 2013;9(6):24–35.
33. Gołąbek-Dropiewska K, Pawłowska J, Witkowski J, Lasek J, Marks W, Stasiak M, et al. Analysis of selected pro- and anti-inflammatory cytokines in patients with multiple injuries in the early period after trauma. Cent Eur J Immunol. 2018;43(1):42–49. PMID: 29731691 https://doi.org/10.5114/ceji.2018.74872
34. Xiao W, Mindrinos MN, Seok J, Cuschieri J, Cuenca AG, Gao H, et al. A genomic storm in critically injured humans. J Exp Med. 2011;208(13):2581– 2590. PMID: 22110166 https://doi.org/10.1084/jem.20111354
35. Hildebrand F, Pape HC, Krettek C. Die Bedeutung der Zytokine in der posttraumatischen Entzündungsreaktion [The importance of cytokines in the posttraumatic inflammatory reaction]. Unfallchirurg. 2005;108(10):793– 794, 796–803. PMID: 16175346 https://doi.org/10.1007/s00113-005-1005-1
36. Gentile LF, Cuenca AG, Efron PA, Ang D, Bihorac A, McKinley BA, et al. Persistent inflammation and immunosuppression: a common syndrome and new horizon for surgical intensive care. J Trauma Acute Care Surg. 2012;72(6):1491–1501. PMID: 22695412 https://doi.org/0.1097/ TA.0b013e318256e000
37. Duggal NA, Upton J, Phillips AC, Sapey E, Lord JM. An age-related numerical and functional deficit in CD19(+) CD24(hi) CD38(hi) B cells is associated with an increase in systemic autoimmunity. Aging Cell. 2013;12(5):873–881. PMID: 23755918 https://doi.org/10.1111/acel.12114
38. Bruijns SR, Guly HR, Bouamra O, Lecky F, Lee WA. The value of traditional vital signs, shock index, and age-based markers in predicting trauma mortality. J Trauma Acute Care Surg. 2013;74(6):1432–1437. PMID: 23694869 https://doi.org/10.1097/TA.0b013e31829246c7
39. Burk AM, Martin M, Flierl MA, Rittirsch D, Helm M, Lampl L, et al. Early complementopathy after multiple injuries in humans. Shock. 2012;37(4):348– 354. PMID: 22258234 https://doi.org/10.1097/SHK.0b013e3182471795
40. Jenne CN, Urrutia R, Kubes P. Platelets: bridging hemostasis, inflammation, and immunity. Int J Lab Hematol. 2013;35(3):254–261. PMID: 23590652 https://doi.org/10.1111/ijlh.12084
41. van Gils JM, Zwaginga JJ, Hordijk PL. Molecular and functional interactions among monocytes, platelets, and endothelial cells and their relevance for cardiovascular diseases. J Leukoc Biol. 2009;85(2):195–204. PMID: 18948548 https://doi.org/10.1189/jlb.0708400
42. Laffont B, Corduan A, Ple H, Duchez AC, Cloutier N, Boilard E, et al. Activated platelets can deliver mRNA regulatory Ago2 microRNA complexes to endothelial cells via microparticles. Blood. 2013;122(2):253–261. PMID: 23652806 https://doi.org/10.1182/blood-2013-03-492801
43. Timar CI, Lorincz AM, Csepanyi-Komi R, Valyi-Nagy A, Nagy G, Buzas EI, et al. Antibacterial effect of microvesicles released from human neutrophilic granulocytes. Blood. 2013;121(3):510–518. PMID: 23144171 https://doi. org/10.1182/blood-2012-05-431114
44. Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: artefacts no more. Trends Cell Biol. 2009;19(2):43–51. PMID: 19144520 https://doi. org/10.1016/j.tcb.2008.11.003
45. Leonard JM, Zhang CX, Lu L, Hoofnagle MH, Fuchs A, Clemens RA, et al. Extrathoracic multiple trauma dysregulates neutrophil function and exacerbates pneumonia-induced lung injury. J Trauma Acute Care Surg. 2021;90(6):924–934. PMID: 34016916 https://doi.org/10.1097/ TA.0000000000003147
46. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303(5663):1532– 1535. PMID: 15001782 https://doi.org/10.1126/science.1092385
47. Hietbrink F, Koenderman L, Althuizen M, Leenen LP. Modulation of the innate immune response after trauma visualised by a change in functional PMN phenotype. Injury. 2009;40(8):851–855. PMID: 19339006 https://doi. org/10.1016/j.injury.2008.11.002
48. Groeneveld KM, Koenderman L, Warren BL, Jol S, Leenen LPH, Hietbrink F. Early decreased neutrophil responsiveness is related to late onset sepsis in multitrauma patients: An international cohort study. PLoS One. 2017;12(6): e0180145. PMID: 28665985 https://doi.org/10.1371/journal.pone.0180145 eCollection 2017.
49. Serhan CN, Chiang N. Resolution phase lipid mediators of inflammation: agonists of resolution. Curr Opin Pharmacol. 2013;13(4):632–640. PMID: 23747022 https://doi.org/ 10.1016/j.coph.2013.05.012
50. McKee CA, Lukens JR. Emerging roles for the immune system in traumatic brain injury. Front Immunol. 2016;7:556. PMID: 27994591 https://doi. org/10.3389/fimmu.2016.00556 eCollection 2016.
51. Liu MH, Tian J, Su YP, Wang T, Xiang Q, Wen L. Cervical sympathetic block regulates early systemic inflammatory response in severe trauma patients. Med Sci Monitor. 2013;19:194–201. PMID: 23492458 https://doi. org/10.12659/MSM.883833
52. Hall S, Kumaria A, Belli A. The role of vagus nerve overactivity in the increased incidence of pneumonia following traumatic brain injury. Br J Neurosurg. 2014;28(2):181–186. PMID: 24024980 https://doi.org/10.3109/02 688697.2013.835373
53. Bellander BM, Singhrao SK, Ohlsson M, Mattsson P, Svensson M. Complement activation in the human brain after traumatic head injury. J Neurotrauma. 2001;18(12):1295–1311. PMID: 11780861 https://doi.org/10.1089/08977150 152725605
54. Braun M, Vaibhav K, Saad NM, Fatima S, Vender JR, Baban B, et al. White matter damage after traumatic brain injury: A role for damage associated molecular patterns. Biochim Biophys Acta Mol Basis Dis. 2017; 1863(10 Pt B):2614–2626. PMID: 28533056 https://doi.org/10.1016/j.bbadis.2017.05.020
55. Kharrazian D. Traumatic Brain Injury and the Effect on the Brain-Gut Axis. Altern Ther Health Med. 2015;21(Suppl 3):28–32. PMID: 26348611
56. Patterson TT, Nicholson S, Wallace D, Hawryluk GWJ, Grandhi R. Complex Feed-Forward and Feedback Mechanisms Underlie the Relationship Between Traumatic Brain Injury and the Gut-Microbiota-Brain Axis. Shock. 2019;52(3):318–325. PMID: 30335675 https://doi.org/10.1097/ SHK.0000000000001278
57. Sundman MH, Chen NK, Subbian V, Chou YH. The bidirectional gut-brain-microbiota axis as a potential nexus between traumatic brain injury, inflammation, and disease. Brain Behav Immun. 2017;66:31–44. PMID: 28526435 https://doi.org/10.1016/j.bbi.2017.05.009
58. Alverdy JC. Microbiome Medicine: This Changes Everything. J Am Coll Surg. 2018;226(5):719–729. PMID: 29505823 https://doi.org/10.1016/j.jamcollsurg .2018.02.004
59. Patel JJ, Rosenthal MD, Miller KR, Martindale RG. The gut in trauma. Curr Opin Crit Care. 2016;22(4):339–346. PMID: 27314259 https://doi. org/10.1097/MCC.0000000000000331
60. Hang CH, Shi JX, Li JS, Li WQ, Yin HX. Up-regulation of intestinal nuclear factor kappa B and intercellular adhesion molecule-1 following traumatic brain injury in rats. World J Gastroenterol. 2005;11(8):1149–1154. PMID: 15754395 https://doi.org/10.3748/wjg.v11.i8.1149
61. Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 2009;9(5):313–323. PMID: 19343057 https://doi.org/10.1038/nri2515
62. Howard BM, Kornblith LZ, Christie SA, Conroy AS, Nelson MF, Campion EM, et al. Characterizing the gut microbiome in trauma: significant changes in microbial diversity occur early after severe injury. Trauma Surg Acute Care Open. 2017;2(1):e000108. PMID: 29766103 https://doi.org/10.1136/tsaco-2017-000108 eCollection 2017.
63. Shimizu K, Ojima M, Ogura H. Gut Microbiota and Probiotics/Synbiotics for Modulation of Immunity in Critically Ill Patients. Nutrients. 2021;13(7):2439. PMID: 34371948 https://doi.org/10.3390/nu13072439
64. Carabotti M, Scirocco A, Maselli MA, Severi C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol. 2015;28(2):203–209. PMID: 25830558
65. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2004;118(2):229–241. PMID: 15260992 https:// doi.org/10.1016/j.cell.2004.07.002
66. Ivanov II, Honda K Intestinal commensal microbes as immune modulators. Cell Host Microbe. 2012;12(4):496–508. PMID: 23084918 https://doi. org/10.1016/j.chom.2012.09.009
67. Burmeister DM, Johnson TR, Lai Z, Scroggins SR, DeRosa M, Jonas RB, et al. The gut microbiome distinguishes mortality in trauma patients upon admission to the emergency department. J Trauma Acute Care Surg. 2020;88(5):579–587. PMID: 32039976 https://doi.org/10.1097/TA.0000000000002612
68. Nielson JL, Paquette J, Liu AW, Guandique CF, Tovar CA, Inoue T, et al. Topological data analysis for discovery in preclinical spinal cord injury and traumatic brain injury. Nat Commun. 2015;6:8581. PMID: 26466022 https:// doi.org/10.1038/ncomms9581
Рецензия
Для цитирования:
Булава Г.В. Патогенетические механизмы органной дисфункции при тяжелой сочетанной травме. Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь». 2023;12(1):92-98. https://doi.org/10.23934/2223-9022-2023-12-1-92-98
For citation:
Bulava G.V. Pathogenetic Mechanisms of Organ Dysfunction in Severe Concomitant Trauma. Russian Sklifosovsky Journal "Emergency Medical Care". 2023;12(1):92-98. https://doi.org/10.23934/2223-9022-2023-12-1-92-98