Preview

Russian Sklifosovsky Journal "Emergency Medical Care"

Advanced search

Robotics in Cranial Neurosurgery, 35 Years of Evolution

https://doi.org/10.23934/2223-9022-2022-11-2-355-363

Abstract

We reviewed the experience of robotic devices in cranial neurosurgery for 35 years. The brief history is represented, prerequisites for robotics development are specified. The most popular devices are listed, which are used for surgical instruments positioning and remote manipulations. We pointed key robotic features, main results of their application, showed advantages, shortcomings and ways to resolve some problems. The accurateness of robotic systems is shown in comparison with frame-based stereotactic surgery. The main trends in robotic development in the future are described as well.

About the Authors

A. Yu. Dmitriev
Neurosurgical Department for the Treatment of Patients with Cerebral Vascular Diseases, N.V. Sklifosovsky Research Institute for Emergency Medicine; A.I. Yevdokimov Moscow State University of Medicine and Dentistry
Russian Federation

Aleksandr Yu. Dmitriev, Candidate of Medical Sciences, Neurosurgeon; Assistant

3 B. Sukharevskaya Sq., Moscow, 129090, Russian Federation

20 Bldg. 1, Delegatskaya St., Moscow, 127473, Russian Federation



V. G. Dashyan
Neurosurgical Department for the Treatment of Patients with Cerebral Vascular Diseases, N.V. Sklifosovsky Research Institute for Emergency Medicine; A.I. Yevdokimov Moscow State University of Medicine and Dentistry
Russian Federation

Vladimir G. Dashyan - Doctor of Medical Sciences, Neurosurgeon, Neurosurgical Department for the Treatment of Patients with Cerebral Vascular Diseases; Professor

3 B. Sukharevskaya Sq., Moscow, 129090, Russian Federation

20 Bldg. 1, Delegatskaya St., Moscow, 127473, Russian Federation



References

1. Mascott CR, Sol JC, Bousquet P, Lagarrigue J, Lazorthes Y, Lauwers-Cances V. Quantification of true in vivo (application) accuracy in cranial image-guided surgery: influence of mode of patient registration. Neurosurgery. 2006;59(1 Suppl 1):146–156. PMID: 16888546 https://doi.org/10.1227/01.NEU.0000220089.39533.4E

2. Landi A, Marina R, DeGrandi C, Crespi A, Montanari G, Sganzerla EP, Gaini SM. Accuracy of stereotactic localisation with magnetic resonance compared to CT scan: experimental findings. Acta Neurochir. 2001;143(6):593–601. PMID: 11534676 https://doi.org/10.1007/s007010170064

3. Kwoh YS, Hou J, Jonckheere EA, Hayathi S. A robot with improved absolute positioning accuracy for stereotactic brain surgery. IEEE Trans Biomed Eng. 1988;35(2):153–160. PMID: 3280462 https://doi.org/10.1109/10.1354

4. Doulgeris JJ, Gonzalez-Blohm SA, Filis AK, Shea TM, Aghayev K, Vrionis FD. Robotics in neurosurgery: evolution, current challenges, and compromises. Cancer Control. 2015;22(3):352–359. PMID: 26351892 https://doi.org/10.1177/107327481502200314

5. Benabid AL, Cinquin P, Lavallée S, Le Bas JF, Demongeot J, Rougemont J. Computer driven robot for stereotactic surgery connected to CT scan and magnetic resonance imaging: technological design and preliminary results. Appl Neurophysiol. 1987;50(1-6):153–154. PMID: 3329838 https://doi.org/10.1159/000100701

6. Wang MY, Goto T, Tessitore E, Veeravagu A. Robotics in neurosurgery. Neurosurg Focus. 2017;42(5):E1. PMID: 28463607 https://doi.org/10.3171/2017.2.FOCUS1783

7. Adler JR Jr, Murphy MJ, Chang SD, Hancock SL. Image-guided robotic radiosurgery. Neurosurgery. 1999;44(6):1299–1307. PMID: 10371630

8. Drake JM, Joy M, Goldenberg A, Kreindler D. Computer and robot-assisted resection of thalamic astrocytomas in children. Neurosurgery. 1991;29(1):27–33. PMID: 1870684 https://doi.org/10.1097/00006123-199107000-00005

9. Davies B. A review of robotics in surgery. Proc Inst Mech Eng H. 2000;214(1):129–140. PMID: 10718057 https://doi.org/10.1243/0954411001535309

10. Benabid AL, Lavallee S, Hoffmann D, Cinquin P, Demongeot J, Danel F. Potential use of robots in endoscopic neurosurgery. Acta Neurochir Suppl (Wien). 1992;54:93–97. PMID: 1595416 https://doi.org/10.1007/978-3-7091-6687-1_14

11. Hill JW, Jensen JF. Advanced telepresence surgery system development. Stud Health Technol Inform. 1996;29:107–117. PMID: 10163743

12. Marescaux J, Leroy J, Rubino F. Transcontinental robot-assisted remote telesurgery: feasibility and potential applications. Ann Surg. 2002;235(4):487–492. PMID: 11923603 https://doi.org/10.1097/00000658-200204000-00005

13. Le Roux PD, Das H, Esquenazi S, Kelly PJ. Robot-assisted microsurgery: a feasibility study in the rat. Neurosurgery. 2001;48(3):584–589. PMID: 11270549 https://doi.org/10.1097/00006123-200103000-00026

14. Hongo K, Kobayashi S, Kakizawa Y, Koyama J, Goto T, Okudera H, et al. NeuRobot: telecontrolled micromanipulator system for minimally invasive microneurosurgery – preliminary results. Neurosurgery. 2002;51(4):985–988. PMID: 12234407 https://doi.org/10.1097/00006123-200210000-00024

15. Goto T, Hongo K, Kakizawa Y, Muraoka H, Miyairi Y, Tanaka Y, et al. Clinical application of robotic telemanipulation system in neurosurgery. J Neurosurg. 2003;99(6):1082–1084. PMID: 17986838 https://doi.org/10.3171/jns.2003.99.6.1082

16. Von Langsdorff D, Paquis P, Fontaine D. In vivo measurement of the frame-based application accuracy of the Neuromate neurosurgical robot. J Neurosurg. 2015;122(1):191–194. PMID: 25361490 https://doi.org/10.3171/2014.9.JNS14256

17. Fomenko A, Serletis D. Robotic stereotaxy in cranial neurosurgery: a qualitative systematic review. Neurosurgery. 2018;83(4):642–650. PMID: 29253265 https://doi.org/10.1093/neuros/nyx576

18. Barua NU, Lowis SP, Woolley M, O’Sullivan S, Harrison R, Gill SS. Robot-guided convection-enhanced delivery of carboplatin for advanced brainstem glioma. Acta Neurochir (Wien). 2013;155(8):1459–1465. PMID: 23595829 https://doi.org/10.1007/s00701-013-1700-6

19. Mattei TA, Rodriguez AH, Sambhara D, Mendel E. Current state-of-the-art and future perspectives of robotic technology in neurosurgery. Neurosurg Rev. 2014;37(3):357–366. PMID: 24729137 https://doi.org/10.1007/s10143-014-0540-z

20. Cardinale F, Rizzi M, d’Orio P, Casaceli G, Arnulfo G, Narizzano M, et al. A new tool for touch-free patient registration for robot-assisted intracranial surgery: application accuracy from a phantom study and a retrospective surgical series. Neurosurg Focus. 2017;42(5):E8. PMID: 28463615 https://doi.org/10.3171/2017.2.FOCUS16539

21. Bekelis K, Radwan TA, Desai A, Roberts DW. Frameless robotically targeted stereotactic brain biopsy: feasibility, diagnostic yield, and safety. J Neurosurg. 2012;116(5):1002–1006. PMID: 22404667 https://doi.org/10.3171/2012.1.JNS111746

22. Lollis SS, Roberts DW. Robotic catheter ventriculostomy: feasibility, efficacy, and implications. J Neurosurg. 2008;108(2):269–274. PMID: 18240921 https://doi.org/10.3171/JNS/2008/108/2/0269

23. Gonen L, Chakravarthi SS, Monroy-Sosa A, Celix JM, Kojis N, Singh M, et al. Initial experience with a robotically operated video optical telescopic-microscope in cranial neurosurgery: feasibility, safety, and clinical applications. Neurosurg Focus. 2017;42(5):E9. PMID: 28463622 https://doi.org/10.3171/2017.3.FOCUS1712

24. Neudorfer C, Hunsche S, Hellmich M, Majdoub FE, Maarouf M. Comparative study of robot-assisted versus conventional frame-based deep brain stimulation stereotactic neurosurgery. Stereotact Funct Neurosurg. 2018; 96(5):327–334. PMID: 30481770 https://doi.org/10.1159/000494736

25. Pillai A, Ratnathankom A, Ramachandran SN, Udayakumaran S, Subhash P, Krishnadas A. Expanding the spectrum of robotic assistance in cranial neurosurgery. Oper Neurosurg (Hagerstown). 2019; 17(2):164–173. PMID: 30203040 https://doi.org/10.1093/ons/opy229

26. Lefranc M, Capel C, Pruvot-Occean AS, Fichten A, Desenclos C, Toussaint P, et al. Frameless robotic stereotactic biopsies: a consecutive series of 100 cases. J Neurosurg. 2015; 122(2):342–352. PMID: 25380111 https://doi.org/10.3171/2014.9.JNS14107

27. Terrier L, Gilard V, Marguet F, Fontanilles M, Derrey S. Stereotactic brain biopsy: evaluation of robot-assisted procedure in 60 patients. Acta Neurochir (Wien). 2019;161(3):545–552. PMID: 30675655 https://doi.org/10.1007/s00701-019-03808-5

28. Grimm F, Naros G, Gutenberg A, Keric N, Giese A, Gharabaghi A. Blurring the boundaries between frame-based and frameless stereotaxy: feasibility study for brain biopsies performed with the use of a head-mounted robot. J Neurosurg. 2015;123(3):737–742. PMID: 26067616 https://doi.org/10.3171/2014.12.JNS141781

29. Smith JA, Jivraj J, Wong R, Yang V. 30 years of neurosurgical robots: review and trends for manipulators and associated navigational systems. Ann Biomed Eng. 2016;44(4):836–846. PMID: 26467553 https://doi.org/10.1007/s10439-015-1475-4

30. Minchev G, Kronreif G, Martínez-Moreno M, Dorfer C, Micko A, Mert A, et al. A novel miniature robotic guidance device for stereotactic neurosurgical interventions: preliminary experience with the iSYS1 robot. J Neurosurg. 2011;126(3):985–996. PMID: 27104847 https://doi.org/10.3171/2016.1.JNS152005

31. Dorfer C, Minchev G, Czech T, Stefanits H, Feucht M, Pataraia E, et al. A novel miniature robotic device for frameless implantation of depth electrodes in refractory epilepsy. J Neurosurg. 2017;126(5):1622–1628. PMID: 27494814 https://doi.org/10.3171/2016.5.JNS16388

32. Legnani FG, Franzini A, Mattei L, Saladino A, Casali C, Prada F, et al. Image-guided biopsy of intracranial lesions with a small robotic device (iSYS1): a prospective, exploratory pilot study. Oper Neurosurg (Hagerstown). 2019;17(4):403–412. PMID: 30690491 https://doi.org/10.1093/ons/opy411

33. Couldwell WT, MacDonald JD, Thomas CL, Hansen BC, Lapalikar A, Thakkar B, et al. Computer-aided design/computer-aided manufacturing skull base drill. Neurosurg Focus. 2017;42(5):E6. PMID: 28463621 https://doi.org/10.3171/2017.2.FOCUS16561

34. Ghanbari L, Rynes ML, Hu J, Schulman DS, Johnson GW, Laroque M, et al. Craniobot: a computer numerical controlled robot for cranial microsurgeries. Sci Rep. 2019;9(1):1023. PMID: 30705287 https://doi.org/10.1038/s41598-018-37073-w

35. Marcus HJ, Seneci CA, Payne CJ, Nandi D, Darzi A, Yang GZ. Robotics in keyhole transcranial endoscope-assisted microsurgery: a critical review of existing systems and proposed specifications for new robotic platforms. Neurosurgery. 2014;10(Suppl 1):84–96. PMID: 23921708 https://doi.org/10.1227/NEU.0000000000000123

36. Kasparova КА, Dreval ОN. Robot systems in neurosurgery. Russian Journal of Neurosurgery. 2012;(4);88–93. (in Russ.).

37. Zimmermann M, Krishnan R, Raabe A, Seifert V. Robot-assisted navigated endoscopic ventriculostomy: implementation of a new technology and first clinical results. Acta Neurochir (Wien). 2004;146(7):697–704. PMID: 15197613 https://doi.org/10.1007/s00701-004-0267-7

38. Zimmermann M, Krishnan R, Raabe A, Seifert V. Robot-assisted navigated neuroendoscopy. Neurosurgery. 2002;51(6):1446–1451. PMID: 12445350 https://doi.org/10.1227/01.NEU.0000036095.14236.74

39. Kaushik A, Dwarakanath TA, Bhutani G, Moiyadi A, Chaudhari P. Validation of high precision robot-assisted methods for intracranial applications: preliminary study. World Neurosurg. 2020;137:71–77. PMID: 32032794 https://doi.org/10.1016/j.wneu.2020.01.206

40. Panesar SS, Kliot M, Parrish R, Fernandez-Miranda J, Cagle Y, Britz GW. Promises and perils of artificial intelligence in neurosurgery. Neurosurgery. 2018;87(1):33–44. PMID: 31748800 https://doi.org/10.1093/neuros/nyz471

41. Louw DF, Fielding T, McBeth PB, Gregoris D, Newhook P, Sutherland GR. Surgical robotics: a review and neurosurgical prototype development. Neurosurgery. 2004;54(3):525–537. PMID: 15028126 https://doi.org/10.1227/01.neu.0000108638.05274.e9

42. Nathoo N, Cavusoglu MC, Vogelbaum MA, Barnett GH. In touch with robotics: neurosurgery for the future. Neurosurgery. 2005;56(3):421–433. PMID: 15730567 https://doi.org/10.1227/01.neu.0000153929.68024.cf

43. Sutherland GR, Lama S, Gan LS, Wolfsberger S, Zareinia K. Merging machines with microsurgery: clinical experience with neuroArm. J Neurosurg. 2013;118(3):521–529. PMID: 23240694 https://doi.org/10.3171/2012.11.JNS12877

44. Sekhar LN, Tariq F, Kim LJ, Pridgeon J, Hannaford B. Commentary: virtual reality and robotics in neurosurgery. Neurosurgery. 2013;72(Suppl 1):1–6. PMID: 23254797 https://doi.org/10.1227/NEU.0b013e31827db647

45. Hongo K, Goto T, Miyahara T, Kakizawa Y, Koyama J, Tanaka Y. Telecontrolled micromanipulator system (neurobot) for minimally invasive neurosurgery. Acta Neurochir Suppl. 2006;98:63–66. PMID: 17009702 https://doi.org/10.1007/978-3-211-33303-7_9

46. Mitsuishi M, Morita A, Sugita N, Sora S, Mochizuki R, Tanimoto K, et al. Master-slave robotic platform and its feasibility study for micro-neurosurgery. Int J Med Robot. 2013;9(2):180–189. PMID: 22588785 https://doi.org/10.1002/rcs.1434

47. Morita A, Sora S, Mitsuishi M, Warisawa S, Suruman K, Asai D, et al. Microsurgical robotic system for the deep surgical field: development of a prototype and feasibility studies in animal and cadaveric models. J Neurosurg. 2005;103(2):320–327. PMID: 16175863 https://doi.org/10.3171/jns.2005.103.2.0320

48. Ko S, Nakazawa A, Kurose Y, Harada K, Mitsuishi M, Sora S, et al. Intelligent control of neurosurgical robot MM-3 using dynamic motion scaling. Neurosurg Focus. 2017;42(5):E5. PMID: 28463616 https://doi.org/10.3171/2017.2.FOCUS16568

49. Sutherland GR, Wolfsberger S, Lama S, Zareinia K. The evolution of neuroArm. Neurosurgery. 2013;72(Suppl 1):27–32. PMID: 23254809 https://doi.org/10.1227/NEU.0b013e318270da19

50. Lang MJ, Greer AD, Sutherland GR. Intra-operative robotics: NeuroArm. Acta Neurochir Suppl. 2011;109:231–236. PMID: 20960348 https://doi.org/10.1007/978-3-211-99651-5_36

51. Sutherland GR, Latour I, Greer AD, Fielding T, Feil G, Newhook P. An image-guided magnetic resonance-compatible surgical robot. Neurosurgery. 2008;62(2):286–293. PMID: 18382307 https://doi.org/10.1227/01.neu.0000315996.73269.18

52. Kupferman ME, Demonte F, Levine N, Hanna E. Feasibility of a robotic surgical approach to reconstruct the skull base. Skull Base. 2011;21(2):79–82. PMID: 22451805 https://doi.org/10.1055/s-0030-1261258

53. Hong WC, Tsai JC, Chang SD, Sorger JM. Robotic skull base surgery via supraorbital keyhole approach: a cadaveric study. Neurosurgery. 2013;72(Suppl 1):33–38. PMID: 23254810 https://doi.org/10.1227/NEU.0b013e318270d9de

54. Marcus HJ, Hughes-Hallett A, Cundy TP, Yang GZ, Darzi A, Nandi D. Da Vinci robot-assisted keyhole neurosurgery: a cadaver study on feasibility and safety. Neurosurg Rev. 2015;38(2):367–371. PMID: 25516094 https://doi.org/10.1007/s10143-014-0602-2

55. Panesar S, Cagle Y, Chander D, Morey J, Fernandez-Miranda J, Kliot M. Artificial intelligence and the future of surgical robotics. Ann Surg. 2019;270(2):223–226. PMID: 30907754 https://doi.org/10.1097/SLA.0000000000003262

56. Leonard S, Wu KL, Kim Y, Krieger A, Kim PCW. Smart tissue anastomosis robot (STAR): a vision-guided robotics system for laparoscopic suturing. IEEE Trans Biomed Eng. 2014;61(4):1305–1317. PMID: 24658254 https://doi.org/10.1109/TBME.2014.2302385

57. Goto T, Hongo K, Yako T, Hara Y, Okamoto J, Toyoda K, et al. The concept and feasibility of EXPERT: intelligent armrest using robotics technology. Neurosurgery. 2013;72(Suppl 1):39–42. PMID: 23254811 https://doi.org/10.1227/NEU.0b013e318271ee66

58. Ogiwara T, Goto T, Nagm A, Hongo K. Endoscopic endonasal transsphenoidal surgery using the iArmS operation support robot: initial experience in 43 patients. Neurosurg Focus. 2017;42(5):E10. PMID: 28463614 https://doi.org/10.3171/2017.3.FOCUS16498


Review

For citations:


Dmitriev A.Yu., Dashyan V.G. Robotics in Cranial Neurosurgery, 35 Years of Evolution. Russian Sklifosovsky Journal "Emergency Medical Care". 2022;11(2):355-363. https://doi.org/10.23934/2223-9022-2022-11-2-355-363

Views: 558


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2223-9022 (Print)
ISSN 2541-8017 (Online)