Роботы в краниальной нейрохирургии, эволюция за 35 лет
https://doi.org/10.23934/2223-9022-2022-11-2-355-363
Аннотация
В обзоре литературы описан 35-летний опыт работы с роботами в краниальной нейрохирургии. Представлен краткий исторический очерк и указаны предпосылки развития робототехники. Перечислены наиболее известные устройства, используемые для позиционирования хирургических инструментов и дистанционных манипуляций. Указаны ключевые особенности роботов, основные результаты их применения, представлены преимущества, недостатки и пути решения некоторых проблем. Показана точность роботизированных систем в сравнении с рамным стереотаксисом. В завершение приведены основные тенденции роботостроения в будущем.
Об авторах
А. Ю. ДмитриевРоссия
Дмитриев Александр Юрьевич, кандидат медицинских наук, врач-нейрохирург; ассистент
Российская Федерация, 129010, Москва, Большая Сухаревская пл., 3
Российская Федерация, 127473, Москва, ул. Делегатская, 20, стр. 1
В. Г. Дашьян
Россия
Дашьян Владимир Григорьевич - доктор медицинских наук, врач-нейрохирург; профессор кафедры нейрохирургии и нейрореанимации
Российская Федерация, 129010, Москва, Большая Сухаревская пл., 3
Российская Федерация, 127473, Москва, ул. Делегатская, 20, стр. 1
Список литературы
1. Mascott CR, Sol JC, Bousquet P, Lagarrigue J, Lazorthes Y, Lauwers-Cances V. Quantification of true in vivo (application) accuracy in cranial image-guided surgery: influence of mode of patient registration. Neurosurgery. 2006;59(1 Suppl 1):146–156. PMID: 16888546 https://doi.org/10.1227/01.NEU.0000220089.39533.4E
2. Landi A, Marina R, DeGrandi C, Crespi A, Montanari G, Sganzerla EP, Gaini SM. Accuracy of stereotactic localisation with magnetic resonance compared to CT scan: experimental findings. Acta Neurochir. 2001;143(6):593–601. PMID: 11534676 https://doi.org/10.1007/s007010170064
3. Kwoh YS, Hou J, Jonckheere EA, Hayathi S. A robot with improved absolute positioning accuracy for stereotactic brain surgery. IEEE Trans Biomed Eng. 1988;35(2):153–160. PMID: 3280462 https://doi.org/10.1109/10.1354
4. Doulgeris JJ, Gonzalez-Blohm SA, Filis AK, Shea TM, Aghayev K, Vrionis FD. Robotics in neurosurgery: evolution, current challenges, and compromises. Cancer Control. 2015;22(3):352–359. PMID: 26351892 https://doi.org/10.1177/107327481502200314
5. Benabid AL, Cinquin P, Lavallée S, Le Bas JF, Demongeot J, Rougemont J. Computer driven robot for stereotactic surgery connected to CT scan and magnetic resonance imaging: technological design and preliminary results. Appl Neurophysiol. 1987;50(1–6):153–154. PMID: 3329838 https://doi.org/10.1159/000100701
6. Wang MY, Goto T, Tessitore E, Veeravagu A. Robotics in neurosurgery. Neurosurg Focus. 2017;42(5):E1. PMID: 28463607 https://doi.org/10.3171/2017.2.FOCUS1783
7. Adler JR Jr, Murphy MJ, Chang SD, Hancock SL. Image-guided robotic radiosurgery. Neurosurgery. 1999;44(6):1299–1307. PMID: 10371630
8. Drake JM, Joy M, Goldenberg A, Kreindler D. Computer and robot-assisted resection of thalamic astrocytomas in children. Neurosurgery. 1991;29(1):27–33. PMID: 1870684 https://doi.org/10.1097/00006123-199107000-00005
9. Davies B. A review of robotics in surgery. Proc Inst Mech Eng H. 2000;214(1):129–140. PMID: 10718057 https://doi.org/10.1243/0954411001535309
10. Benabid AL, Lavallee S, Hoffmann D, Cinquin P, Demongeot J, Danel F. Potential use of robots in endoscopic neurosurgery. Acta Neurochir Suppl (Wien). 1992;54:93–97. PMID: 1595416 https://doi.org/10.1007/978-3-7091-6687-1_14
11. Hill JW, Jensen JF. Advanced telepresence surgery system development. Stud Health Technol Inform. 1996;29:107–117. PMID: 10163743
12. Marescaux J, Leroy J, Rubino F. Transcontinental robot-assisted remote telesurgery: feasibility and potential applications. Ann Surg. 2002;235(4):487-492. PMID: 11923603 https://doi.org/10.1097/00000658-200204000-00005
13. Le Roux PD, Das H, Esquenazi S, Kelly PJ. Robot-assisted microsurgery: a feasibility study in the rat. Neurosurgery. 2001;48(3):584–589. PMID: 11270549 https://doi.org/10.1097/00006123-200103000-00026
14. Hongo K, Kobayashi S, Kakizawa Y, Koyama J, Goto T, Okudera H, et al. NeuRobot: telecontrolled micromanipulator system for minimally invasive microneurosurgery – preliminary results. Neurosurgery. 2002;51(4):985-988. PMID: 12234407 https://doi.org/10.1097/00006123-200210000-00024
15. Goto T, Hongo K, Kakizawa Y, Muraoka H, Miyairi Y, Tanaka Y, et al. Clinical application of robotic telemanipulation system in neurosurgery. J Neurosurg. 2003;99(6):1082–1084. PMID: 17986838 https://doi.org/10.3171/jns.2003.99.6.1082
16. Von Langsdorff D, Paquis P, Fontaine D. In vivo measurement of the frame-based application accuracy of the Neuromate neurosurgical robot. J Neurosurg. 2015;122(1):191–194. PMID: 25361490 https://doi.org/10.3171/2014.9.JNS14256
17. Fomenko A, Serletis D. Robotic stereotaxy in cranial neurosurgery: a qualitative systematic review. Neurosurgery. 2018;83(4):642–650. PMID: 29253265 https://doi.org/10.1093/neuros/nyx576
18. Barua NU, Lowis SP, Woolley M, O’Sullivan S, Harrison R, Gill SS. Robot-guided convection-enhanced delivery of carboplatin for advanced brainstem glioma. Acta Neurochir (Wien). 2013;155(8):1459–1465. PMID: 23595829 https://doi.org/10.1007/s00701-013-1700-6
19. Mattei TA, Rodriguez AH, Sambhara D, Mendel E. Current state-of-the-art and future perspectives of robotic technology in neurosurgery. Neurosurg Rev. 2014;37(3):357–366. PMID: 24729137 https://doi.org/10.1007/s10143-014-0540-z
20. Cardinale F, Rizzi M, d’Orio P, Casaceli G, Arnulfo G, Narizzano M, et al. A new tool for touch-free patient registration for robot-assisted intracranial surgery: application accuracy from a phantom study and a retrospective surgical series. Neurosurg Focus. 2017;42(5):E8. PMID: 28463615 https://doi.org/10.3171/2017.2.FOCUS16539
21. Bekelis K, Radwan TA, Desai A, Roberts DW. Frameless robotically targeted stereotactic brain biopsy: feasibility, diagnostic yield, and safety. J Neurosurg. 2012;116(5):1002–1006. PMID: 22404667 https://doi.org/10.3171/2012.1.JNS111746
22. Lollis SS, Roberts DW. Robotic catheter ventriculostomy: feasibility, efficacy, and implications. J Neurosurg. 2008;108(2):269–274. PMID: 18240921 https://doi.org/10.3171/JNS/2008/108/2/0269
23. Gonen L, Chakravarthi SS, Monroy-Sosa A, Celix JM, Kojis N, Singh M, et al. Initial experience with a robotically operated video optical telescopic-microscope in cranial neurosurgery: feasibility, safety, and clinical applications. Neurosurg Focus. 2017;42(5):E9. PMID: 28463622 https://doi.org/10.3171/2017.3.FOCUS1712
24. Neudorfer C, Hunsche S, Hellmich M, Majdoub FE, Maarouf M. Comparative study of robot-assisted versus conventional frame-based deep brain stimulation stereotactic neurosurgery. Stereotact Funct Neurosurg. 2018;96(5):327–334. PMID: 30481770 https://doi.org/10.1159/000494736
25. Pillai A, Ratnathankom A, Ramachandran SN, Udayakumaran S, Subhash P, Krishnadas A. Expanding the spectrum of robotic assistance in cranial neurosurgery. Oper Neurosurg (Hagerstown). 2019; 17(2):164–173. PMID: 30203040 https://doi.org/10.1093/ons/opy229
26. Lefranc M, Capel C, Pruvot-Occean AS, Fichten A, Desenclos C, Toussaint P, et al. Frameless robotic stereotactic biopsies: a consecutive series of 100 cases. J Neurosurg. 2015; 122(2):342–352. PMID: 25380111 https://doi.org/10.3171/2014.9.JNS14107
27. Terrier L, Gilard V, Marguet F, Fontanilles M, Derrey S. Stereotactic brain biopsy: evaluation of robot-assisted procedure in 60 patients. Acta Neurochir (Wien). 2019;161(3):545–552. PMID: 30675655 https://doi.org/10.1007/s00701-019-03808-5
28. Grimm F, Naros G, Gutenberg A, Keric N, Giese A, Gharabaghi A. Blurring the boundaries between frame-based and frameless stereotaxy: feasibility study for brain biopsies performed with the use of a head-mounted robot. J Neurosurg. 2015;123(3):737–742. PMID: 26067616 https://doi.org/10.3171/2014.12.JNS141781
29. Smith JA, Jivraj J, Wong R, Yang V. 30 years of neurosurgical robots: review and trends for manipulators and associated navigational systems. Ann Biomed Eng. 2016;44(4):836–846. PMID: 26467553 https://doi.org/10.1007/s10439-015-1475-4
30. Minchev G, Kronreif G, Martínez-Moreno M, Dorfer C, Micko A, Mert A, et al. A novel miniature robotic guidance device for stereotactic neurosurgical interventions: preliminary experience with the iSYS1 robot. J Neurosurg. 2011;126(3):985–996. PMID: 27104847 https://doi.org/10.3171/2016.1.JNS152005
31. Dorfer C, Minchev G, Czech T, Stefanits H, Feucht M, Pataraia E, et al. A novel miniature robotic device for frameless implantation of depth electrodes in refractory epilepsy. J Neurosurg. 2017;126(5):1622–1628. PMID: 27494814 https://doi.org/10.3171/2016.5.JNS16388
32. Legnani FG, Franzini A, Mattei L, Saladino A, Casali C, Prada F, et al. Image-guided biopsy of intracranial lesions with a small robotic device (iSYS1): a prospective, exploratory pilot study. Oper Neurosurg (Hagerstown). 2019;17(4):403–412. PMID: 30690491 https://doi.org/10.1093/ons/opy411
33. Couldwell WT, MacDonald JD, Thomas CL, Hansen BC, Lapalikar A, Thakkar B, et al. Computer-aided design/computer-aided manufacturing skull base drill. Neurosurg Focus. 2017;42(5):E6. PMID: 28463621 https://doi.org/10.3171/2017.2.FOCUS16561
34. Ghanbari L, Rynes ML, Hu J, Schulman DS, Johnson GW, Laroque M, et al. Craniobot: a computer numerical controlled robot for cranial microsurgeries. Sci Rep. 2019;9(1):1023. PMID: 30705287 https://doi.org/10.1038/s41598-018-37073-w
35. Marcus HJ, Seneci CA, Payne CJ, Nandi D, Darzi A, Yang GZ. Robotics in keyhole transcranial endoscope-assisted microsurgery: a critical review of existing systems and proposed specifications for new robotic platforms. Neurosurgery. 2014;10(Suppl 1):84–96. PMID: 23921708 https://doi.org/10.1227/NEU.0000000000000123
36. Каспарова К.А., Древаль О.Н. Роботизированные системы в нейрохирургии. Нейрохирургия. 2012;(4):88–93.
37. Zimmermann M, Krishnan R, Raabe A, Seifert V. Robot-assisted navigated endoscopic ventriculostomy: implementation of a new technology and first clinical results. Acta Neurochir (Wien). 2004;146(7):697–704. PMID: 15197613 https://doi.org/10.1007/s00701-004-0267-7
38. Zimmermann M, Krishnan R, Raabe A, Seifert V. Robot-assisted navigated neuroendoscopy. Neurosurgery. 2002;51(6):1446–1451. PMID: 12445350 https://doi.org/10.1227/01.NEU.0000036095.14236.74
39. Kaushik A, Dwarakanath TA, Bhutani G, Moiyadi A, Chaudhari P. Validation of high precision robot-assisted methods for intracranial applications: preliminary study. World Neurosurg. 2020;137:71–77. PMID: 32032794 https://doi.org/10.1016/j.wneu.2020.01.206
40. Panesar SS, Kliot M, Parrish R, Fernandez-Miranda J, Cagle Y, Britz GW. Promises and perils of artificial intelligence in neurosurgery. Neurosurgery. 2018;87(1):33–44. PMID: 31748800 https://doi.org/10.1093/neuros/nyz471
41. Louw DF, Fielding T, McBeth PB, Gregoris D, Newhook P, Sutherland GR. Surgical robotics: a review and neurosurgical prototype development. Neurosurgery. 2004;54(3):525–537. PMID: 15028126 https://doi.org/10.1227/01.neu.0000108638.05274.e9
42. Nathoo N, Cavusoglu MC, Vogelbaum MA, Barnett GH. In touch with robotics: neurosurgery for the future. Neurosurgery. 2005;56(3):421–433. PMID: 15730567 https://doi.org/10.1227/01.neu.0000153929.68024.cf
43. Sutherland GR, Lama S, Gan LS, Wolfsberger S, Zareinia K. Merging machines with microsurgery: clinical experience with neuroArm. J Neurosurg. 2013;118(3):521–529. PMID: 23240694 https://doi.org/10.3171/2012.11.JNS12877
44. Sekhar LN, Tariq F, Kim LJ, Pridgeon J, Hannaford B. Commentary: virtual reality and robotics in neurosurgery. Neurosurgery. 2013;72(Suppl 1):1–6. PMID: 23254797 https://doi.org/10.1227/NEU.0b013e31827db647
45. Hongo K, Goto T, Miyahara T, Kakizawa Y, Koyama J, Tanaka Y. Telecontrolled micromanipulator system (neurobot) for minimally invasive neurosurgery. Acta Neurochir Suppl. 2006;98:63–66. PMID: 17009702 https://doi.org/10.1007/978-3-211-33303-7_9
46. Mitsuishi M, Morita A, Sugita N, Sora S, Mochizuki R, Tanimoto K, et al. Master-slave robotic platform and its feasibility study for micro-neurosurgery. Int J Med Robot. 2013;9(2):180–189. PMID: 22588785 https://doi.org/10.1002/rcs.1434
47. Morita A, Sora S, Mitsuishi M, Warisawa S, Suruman K, Asai D, et al. Microsurgical robotic system for the deep surgical field: development of a prototype and feasibility studies in animal and cadaveric models. J Neurosurg. 2005;103(2):320–327. PMID: 16175863 https://doi.org/10.3171/jns.2005.103.2.0320
48. Ko S, Nakazawa A, Kurose Y, Harada K, Mitsuishi M, Sora S, et al. Intelligent control of neurosurgical robot MM-3 using dynamic motion scaling. Neurosurg Focus. 2017;42(5):E5. PMID: 28463616 https://doi.org/10.3171/2017.2.FOCUS16568
49. Sutherland GR, Wolfsberger S, Lama S, Zareinia K. The evolution of neuroArm. Neurosurgery. 2013;72(Suppl 1):27–32. PMID: 23254809 https://doi.org/10.1227/NEU.0b013e318270da19
50. Lang MJ, Greer AD, Sutherland GR. Intra-operative robotics: NeuroArm. Acta Neurochir Suppl. 2011;109:231–236. PMID: 20960348 https://doi.org/10.1007/978-3-211-99651-5_36
51. Sutherland GR, Latour I, Greer AD, Fielding T, Feil G, Newhook P. An image-guided magnetic resonance-compatible surgical robot. Neurosurgery. 2008;62(2):286–293. PMID: 18382307 https://doi.org/10.1227/01.neu.0000315996.73269.18
52. Kupferman ME, Demonte F, Levine N, Hanna E. Feasibility of a robotic surgical approach to reconstruct the skull base. Skull Base. 2011;21(2):79–82. PMID: 22451805 https://doi.org/10.1055/s-0030-1261258
53. Hong WC, Tsai JC, Chang SD, Sorger JM. Robotic skull base surgery via supraorbital keyhole approach: a cadaveric study. Neurosurgery. 2013;72(Suppl 1):33–38. PMID: 23254810 https://doi.org/10.1227/NEU.0b013e318270d9de
54. Marcus HJ, Hughes-Hallett A, Cundy TP, Yang GZ, Darzi A, Nandi D. Da Vinci robot-assisted keyhole neurosurgery: a cadaver study on feasibility and safety. Neurosurg Rev. 2015;38(2):367–371. PMID: 25516094 https://doi.org/10.1007/s10143-014-0602-2
55. Panesar S, Cagle Y, Chander D, Morey J, Fernandez-Miranda J, Kliot M. Artificial intelligence and the future of surgical robotics. Ann Surg. 2019;270(2):223–226. PMID: 30907754 https://doi.org/10.1097/SLA.0000000000003262
56. Leonard S, Wu KL, Kim Y, Krieger A, Kim PCW. Smart tissue anastomosis robot (STAR): a vision-guided robotics system for laparoscopic suturing. IEEE Trans Biomed Eng. 2014;61(4):1305–1317. PMID: 24658254 https://doi.org/10.1109/TBME.2014.2302385
57. Goto T, Hongo K, Yako T, Hara Y, Okamoto J, Toyoda K, et al. The concept and feasibility of EXPERT: intelligent armrest using robotics technology. Neurosurgery. 2013;72(Suppl 1):39–42. PMID: 23254811 https://doi.org/10.1227/NEU.0b013e318271ee66
58. Ogiwara T, Goto T, Nagm A, Hongo K. Endoscopic endonasal transsphenoidal surgery using the iArmS operation support robot: initial experience in 43 patients. Neurosurg Focus. 2017;42(5):E10. PMID: 28463614 https://doi.org/10.3171/2017.3.FOCUS16498
Рецензия
Для цитирования:
Дмитриев А.Ю., Дашьян В.Г. Роботы в краниальной нейрохирургии, эволюция за 35 лет. Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь». 2022;11(2):355-363. https://doi.org/10.23934/2223-9022-2022-11-2-355-363
For citation:
Dmitriev A.Yu., Dashyan V.G. Robotics in Cranial Neurosurgery, 35 Years of Evolution. Russian Sklifosovsky Journal "Emergency Medical Care". 2022;11(2):355-363. https://doi.org/10.23934/2223-9022-2022-11-2-355-363