COVID-19 и сердечно-сосудистая система. Часть III. Подходы к лечению COVID-19: обзор современной доказательной базы
https://doi.org/10.23934/2223-9022-2021-10-3-438-451
Аннотация
Единая тактика ведения и лечения пациентов с COVID-19 до сих пор отсутствует. На данный момент зарегистрировано большое количество исследований по изучению медикаментозной и немедикаментозной терапии COVID-19. В статье представлен обзор результатов крупных клинических исследований в области лечения COVID-19, рассмотрены потенциальные механизмы действия некоторых препаратов, описаны особенности основных подходов к терапии новой коронавирусной инфекции, а также методы немедикаментозной терапии.
Об авторах
М. К. ВасильченкоРоссия
клинический ординатор по специальности «кардиология»
Российская Федерация, 129090, Москва, Б. Сухаревская пл., д. 3
А. А. Иванников
Россия
клинический ординатор по специальности «кардиология»
Российская Федерация, 129090, Москва, Б. Сухаревская пл., д. 3
А. Н. Эсауленко
Россия
клинический ординатор по специальности «кардиология»
Российская Федерация, 129090, Москва, Б. Сухаревская пл., д. 3
Х. Г. Алиджанова
Россия
доктор медицинских наук, старший преподаватель учебного центра
Российская Федерация, 129090, Москва, Б. Сухаревская пл., д. 3
С. С. Петриков
Россия
член-корреспондент РАН, доктор медицинских наук, директор
Российская Федерация, 129090, Москва, Б. Сухаревская пл., д. 3
Список литературы
1. Global Coronavirus COVID-19 Clinical Trial Tracker. URL: https://www.covid-trials.org/ [Дата обращения 5 июня 2021 г.]
2. Randomised evaluation of COVID-19 therapy (RECOVERY). URL: https://www.recoverytrial.net/files/protocol-archive/recovery-protocol-v6-0-2020-05-14.pdf [Дата обращения 7 июля 2021 г.]
3. Randomised Evaluation of COVID-19 Therapy (RECOVERY). URL: https://www.clinicaltrials.gov/ct2/show/NCT04381936 [Дата обращения 13 мая 2021 г.]
4. RECOVERY Collaborative Group. Azithromycin in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet. 2021;397(10274):605–612. PMID: 33545096 https://doi.org/10.1016/S0140-6736(21)00149-5
5. RECOVERY trial closes recruitment to colchicine treatment for patients hospitalised with COVID-19. URL: https://www.recoverytrial.net/news/recovery-trial-closes-recruitment-to-colchicine-treatmentfor-patients-hospitalised-with-covid-19 [Дата обращения 7 июня 2021 г.]
6. RECOVERY Collaborative Group. Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomized controlled, open-label, platform trial. Lancet. 2021;397(10289):2049–2059. PMID: 34000257 https://doi.org/10.1016/S0140-6736(21)00897-7
7. Mrukowicz J, Rot M. Дексаметазон при тяжелом течении COVID-19. URL: https://empendium.com/ru/chapter/B33.1394.54 [Дата обращения 13 мая 2021 г.]
8. RECOVERY Collaborative Group, Horby P, Mafham M, Linsell L, Bell JL, Staplin N, Emberson JR, et al. Effect of hydroxychloroquine in hospitalized patients with COVID-19. N Engl J Med. 2020;383(21):2030–2040. PMID: 33031652 https://doi.org/10.1056/NEJMoa2022926
9. Statement from the Chief Investigators of the Randomised Evaluation of COVid-19 thERapY (RECOVERY) Trial on hydroxychloroquine, 5 June 2020. No clinical benefit from use of hydroxychloroquinein hospitalized patients with COVID-19. URL: https://www.recoverytrial.net/files/hcqrecovery-statement-050620-final-002.pdf [Дата обращения 10 июня 2021 г.]
10. Mrukowicz J, Gajowiec K. Исследование RECOVERY: лопинавир/ритонавир неэффективен у пациентов с COVID-19 URL: https://empendium.com/ru/chapter/B33.1394.65 [Дата обращения: 10 июня 2021 г.]
11. RECOVERY Collaborative Group. Lopinavir-ritonavir in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet. 2020;396(10259):1345–1352. PMID: 33031764 https://doi.org/10.1016/S0140-6736(20)32013-4
12. “Solidarity” clinical trial for COVID-19 treatments. URL: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/globalresearch-on-novel-coronavirus-2019-ncov/solidarity-clinical-trial-forcovid-19-treatments [Дата обращения 26 мая 2021 г.]
13. Siemieniuk RA, Bartoszko JJ, Ge L, Zeraatkar D, Izcovich A, Kum E, et al. Drug treatments for covid-19: living systematic review and network meta-analysis. BMJ. 2020;370:m2980. PMID: 32732190 https://doi.org/10.1136/bmj.m2980
14. Corticosteroids for COVID-19. Living Guidance. URL: https://www.who.int/publications/i/item/WHO-2019-nCoV-Corticosteroids-2020.1 [Дата обращения 12 июня 2021 г.]
15. Therapeutics and COVID-19: living guideline, 20 November 2020. URL: https://apps.who.int/iris/handle/10665/336729 [Дата обращения 16 июня 2021 г.]
16. Therapeutics and COVID-19: living guideline. URL: https://www.who.int/publications/i/item/WHO-2019-nCoV-therapeutics-2021.1 [Дата обращения 20 июня 2021 г.]
17. Lloyd EC, Gandhi TN, Petty LA. Monoclonal antibodies for COVID-19. JAMA. 2021;325(10):1015. PMID: 33544136 https://doi.org/10.1001/jama.2021.1225
18. BMJ Best Practice. Coronavirus disease 2019 (COVID-19). URL: https://bestpractice.bmj.com/topics/en-gb/3000201/emergingtxs#referencePop947 [Дата обращения 12 июня 2021 г.]
19. Coronavirus (COVID-19) Update: FDA Authorizes Monoclonal Antibodies for Treatment of COVID-19. URL: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizesmonoclonal-antibodies-treatment-covid-19-0 [Дата обращения 23 июня 2021 г.]
20. Coronavirus (COVID-19) Update: FDA Revokes Emergency Use Authorization for Monoclonal Antibody Bamlanivimab. URL: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-revokes-emergency-use-authorization-monoclonalantibody-bamlanivimab [Дата обращения 21 июня 2021 г.]
21. Gottlieb RL, Nirula A, Chen P, Boscia J, Heller B, Morris J, et al. Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19: a randomized clinical trial. JAMA. 2021;325(7):632–644. PMID: 33475701 https://doi.org/10.1001/jama.2021.0202
22. Anti-SARS-CoV-2 Monoclonal Antibodies. URL: https://www.covid19treatmentguidelines.nih.gov/anti-sars-cov-2-antibody-products/anti-sarscov-2-monoclonal-antibodies/ [Дата обращения 13 июня 2021 г.]
23. Phase 3 trial shows regen-cov™ (casirivimab with imdevimab) antibody cocktail reduced hospitalization or death by 70% in non-hospitalized covid-19 patients. URL: https://investor.regeneron.com/news-releases/news-release-details/phase-3-trial-shows-regen-covtm-casirivimabimdevimab-antibody [Дата обращения 13 июня 2021 г.]
24. Fact sheet for health care providers emergency use authorization (EUA) of casirivimab and imdevimab. URL: https://www.fda.gov/media/143892/download [Дата обращения 7 июня 2021 г.]
25. Weinreich DM, Sivapalasingam S, Norton T, Ali S, Gao H, Bhore R, et al. REGN-COV2, un cóctel de anticuerpos neutralizantes, en pacientes ambulatorios con Covid-19. N Engl J Med. 2021;384(3):238–251. PMID: 33332778 https://doi.org/10.1056/NEJMoa2035002
26. EMA issues advice on use of REGN-COV2 antibody combination (casirivimab / imdevimab). URL: https://www.ema.europa.eu/en/news/ema-issues-advice-use-regn-cov2-antibody-combination-casirivimabimdevimab [Дата обращения 14 июня 2021 г.]
27. Anti-SARS-CoV-2 Antibody Products. URL: https://www.covid19treatmentguidelines.nih.gov/anti-sars-cov-2-antibody-products/ [Дата обращения 15 июня 2021 г.]
28. ACTIV-3/TICO LY-CoV555 Study Group, Lundgren JD, Grund B, Barkauskas CE, Holland TL, Gottlieb RL, et al. A neutralizing monoclonal antibody for hospitalized patients with Covid-19. N Engl J Med. 2021;384(10):905–914. PMID: 33356051 https://doi.org/10.1056/NEJMoa2033130
29. EMA issues advice on use of regdanvimab for treating COVID-19. URL: https://www.ema.europa.eu/en/news/ema-issues-advice-useregdanvimab-treating-covid-19 [Дата обращения 7 июля 2021 г.]
30. Celltrion Develops Tailored Neutralising Antibody Cocktail Treatment with CT-P59 to Tackle COVID-19 Variant Spread Using Its Antibody Development Plat. URL: https://www.celltrionhealthcare.com/en-us/board/newsdetail?modify_key=446 [Дата обращения 15 июля 2021 г.]
31. Celltrion’s COVID-19 treatment candidate receives Korean MFDS Conditional Marketing Authorisation. URL: https://www.celltrionhealthcare.com/en-us/board/newsdetail?modify_key=442 [Дата обращения 15 июня 2021 г.]
32. Clark E, Guilpain P, Filip IL, Pansu N, Le Bihan C, Cartron G, et al. Convalescent plasma for persisting COVID-19 following therapeutic lymphocyte depletion: a report of rapid recovery. Br J Haematol. 2020;190(3):e154–e156. PMID: 32593180 https://doi.org/10.1111/bjh.16981
33. RECOVERY Collaborative Group, Horby P, Lim WS, Emberson JR, Mafham M, Bell JL, et al. Dexamethasone in hospitalized patients with Covid-19-preliminary report. N Engl J Med. 2021;384(8):693–704. PMID: 32678530 https://doi.org/10.1056/NEJMoa2021436
34. Libster R, Marc GP, Wappner D, Coviello S, Bianchi A, Braem V, et al. Prevention of severe COVID-19 in the elderly by early high-titer plasma. https://doi.org/10.1101/2020.11.20.20234013 URL: https://www.medrxiv.org/content/10.1101/2020.11.20.20234013v1 [Дата обращения 7 июля 2021 г.]
35. NIH halts trial of COVID-19 convalescent plasma in emergency department patients with mild symptoms. URL: https://www.nih.gov/news-events/news-releases/nih-halts-trial-covid-19-convalescentplasma-emergency-department-patients-mild-symptoms [Дата обращения 16 июня 2021 г.]
36. Буланов А.Ю., Костин А.И., Петриков С.С., Лысенко М.А., Попугаев К.А., Фомина Д.С. и др. Клиническое использование реконвалесцентной плазмы в терапии новой коронавирусной инфекции: московский опыт. Анестезиология и реаниматология. 2020;(6-2):33–39. https://doi.org/10.17116/anaesthesiology202006233
37. Immunoglobulins: SARS-CoV-2 Specific. URL: https://www.covid19treatmentguidelines.nih.gov/anti-sars-cov-2-antibody-products/ivig---sars-cov-2/ [Дата обращения 17 июня 2021 г.]
38. Xie Y, Cao S, Dong H, Li Q, Chen E, Zhang W, et al. Effect of regular intravenous immunoglobulin therapy on prognosis of severe pneumonia in patients with COVID-19. J Infect. 2020;81(2):318–356. PMID: 32283154 https://doi.org/10.1016/j.jinf.2020.03.044
39. Hou X, Tian L, Zhou L, Jia X, Kong L, Xue Y, et al. Intravenous immunoglobulin-based adjuvant therapy for severe COVID-19: a single-center retrospective cohort study. Virol J. 2021;18(1):101. PMID: 34020680 https://doi.org/10.1186/s12985-021-01575-3
40. Zhang J, Yang Y, Yang N, Ma Y, Zhou Q, Li W, et al. Effectiveness of intravenous immunoglobulin for children with severe COVID-19: a rapid review. Ann Transl Med. 2020;8(10):625. PMID: 32566562 https://doi.org/10.21037/atm-20-3305
41. Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020;30(3):269–271. PMID: 32020029 https://doi.org/10.1038/s41422-020-0282-0
42. Table 2a. Remdesivir: Selected Clinical Data. URL: https://www.covid19treatmentguidelines.nih.gov/tables/table-2a/ [Дата обращения 10 июня 2021 г.]
43. Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. Remdesivir for the treatment of Covid-19 - final report. N Engl J Med. 2020;383(19):1813–1826. PMID: 32445440 https://doi.org/10.1056/NEJMoa2007764
44. Fritz ML, Siegert PY, Walker ED, Bayoh MN, Vulule JR, Miller JR. Toxicity of bloodmeals from ivermectin-treated cattle to Anopheles gambiae s.l. Ann Trop Med Parasitol. 2009;103(6):539–547. PMID: 19695159 https://doi.org/10.1179/000349809X12459740922138
45. Omura S, Crump A. Ivermectin: panacea for resource-poor communities? Trends Parasitol. 2014;30(9):445–455. PMID: 25130507 https://doi.org/10.1016/j.pt.2014.07.005
46. Yang SNY, Atkinson SC, Wang C, Lee A, Bogoyevitch MA, Borg NA, et al. The broad spectrum antiviral ivermectin targets the host nuclear transport importin α/β1 heterodimer. Antiviral Res. 2020;177:104760. PMID: 32135219 https://doi.org/10.1016/j.antiviral.2020.104760
47. Arévalo AP, Pagotto R, Pórfido JL, Daghero H, Segovia M, Yamasaki K, et al. Ivermectin reduces coronavirus infection in vivo: a mouse experimental model. Sci Rep. 2021;11(1):7132. PMID: 33785846 https://doi.org/10.1101/2020.11.02.363242
48. Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDAapproved Drug Ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. 2020;178:104787. PMID: 32251768 https://doi.org/10.1016/j.antiviral.2020.104787
49. Chaccour C, Abizanda G, Irigoyen-Barrio Á, Casellas A, Aldaz A, Martínez-Galán F, et al. Nebulized ivermectin for COVID-19 and other respiratory diseases, a proof of concept, dose-ranging study in rats. Sci Rep. 2020;10(1):17073. PMID: 33051517 https://doi.org/10.1038/s41598-020-74084-y
50. Schmith VD, Zhou JJ, Lohmer LRL. The Approved Dose of Ivermectin Alone is not the Ideal Dose for the Treatment of COVID-19. Clin Pharmacol Ther. 2020;108(4):762–765. PMID: 32378737 https://doi.org/10.1002/cpt.1889
51. Li H, Liu L, Zhang D, Xu J, Dai H, Tang N, et al. SARS-CoV-2 y sepsis viral: observaciones e hipótesis. Lancet. 2020;395(10235):1517-1520. PMID: 32311318 https://doi.org/10.1016/S0140-6736(20)30920-X
52. van Echteld I, Wechalekar MD, Schlesinger N, Buchbinder R, Aletaha D. Colchicine for acute gout. Cochrane Database Syst Rev. 2014;(8): CD006190. PMID: 25123076 https://doi.org/10.1002/14651858.CD006190.pub2
53. Deftereos SG, Giannopoulos G, Vrachatis DA, Siasos GD, Giotaki SG, Gargalianos P, et al. Effect of Colchicine vs Standard Care on Cardiac and Inflammatory Biomarkers and Clinical Outcomes in Patients Hospitalized with Coronavirus Disease 2019: the GRECCO-19 Randomized Clinical Trial. JAMA Netw Open. 2020;3(6):e2013136. PMID: 32579195 https://doi.org/ 10.1001/jamanetworkopen.2020.13136
54. Rabbani AB, Parikh RV, Rafique AM. Colchicine for the Treatment of Myocardial Injury in Patients with Coronavirus Disease 2019 (COVID-19)—an Old Drug with New Life? JAMA Netw Open. 2020;3(6):e2013556. PMID: 32579190 https://doi.org/10.1001/jamanetworkopen.2020.1355
55. Tardif JC, Bouabdallaoui N, L’Allier PL, Gaudet D, Shah B, Pillinger MH, et al. Colchicine for community-treated patients with COVID-19 (COLCORONA): a phase 3, randomised, double-blinded, adaptive, placebo-controlled, multicentre trial. Lancet Respir Med. 2021;9(8):924–932. PMID: 34051877 https://doi.org/10.1016/S2213-2600(21)00222-8.
56. Vincent JL. COVID-19: it’s all about sepsis. Future Microbiol. 2021;16:131–133. PMID: 33491491 https://doi.org/10.2217/fmb-2020-0312
57. Rosen DA, Seki SM, Fernández-Castañeda A, Beiter RM, Eccles JD, Woodfolk JA, et al. Modulation of the sigma-1 receptor–IRE1 pathway is beneficial in preclinical models of inflammation and sepsis. Sci Transl Med. 2019;11(478):eaau5266. PMID: 30728287 https://doi.org/10.1126/scitranslmed.aau5266
58. Rafiee L, Hajhashemi V, Javanmard SH. Fluvoxamine inhibits some inflammatory genes expression in LPS/stimulated human endothelial cells, U937 macrophages, and carrageenan-induced paw edema in rat. Iran J Basic Med Sci. 2016;19(9):977–984. PMID: 27803785
59. Lenze EJ, Mattar C, Zorumski CF, Stevens A, Schweiger J, Nicol GE, et al. Fluvoxamine vs Placebo and Clinical Deterioration in Outpatients with Symptomatic COVID-19: A Randomized Clinical Trial. JAMA. 2020;324(22):2292–2300. PMID: 33180097 https://doi.org/10.1001/jama.2020.22760
60. Yoshikawa T, Hill T, Li K, Peters CJ, Tseng CT. Severe acute respiratory syndrome (SARS) coronavirus-induced lung epithelial cytokines exacerbate SARS pathogenesis by modulating intrinsic functions of monocyte-derived macrophages and dendritic cells. J Virol. 2009;83(7):3039–3048. PMID: 19004938 https://doi.org/10.1128/JVI.01792-08
61. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. PMID: 32171076 https://doi.org/10.1016/S0140-6736(20)30566-3
62. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. PMID: 31986264 https://doi.org/10.1016/S0140-6736(20)30183-5
63. Wang Z, Yang B, Li Q, Wen L, Zhang R. Clinical Features of 69 Cases with Coronavirus Disease 2019 in Wuhan, China. Clin Infect Dis. 2020;71(15):769–777. PMID: 32176772 https://doi.org/10.1093/cid/ciaa272
64. Interleukin-6 Inhibitors: Selected Clinical Data URL: https://www.covid19treatmentguidelines.nih.gov/tables/table-4b/ [Дата обращения 17 июня 2021 г.]
65. Ghosn L, Chaimani A, Evrenoglou T, Davidson M, Graña C, Schmucker C, et al. Interleukin-6 blocking agents for treating COVID-19: a living systematic review. Cochrane Database Syst Rev. 2021;3:CD013881. PMID: 33734435 https://doi.org/10.1002/14651858.CD013881
66. Rubin EJ, Longo DL, Baden LR. Interleukin-6 Receptor Inhibition in Covid-19 – Cooling the Inflammatory Soup. N Engl J Med. 2021;384(16):1564–1565. PMID: 33631064 https://doi.org/10.1056/NEJMe2103108
67. Hermine O, Mariette X, Tharaux PL, Resche-Rigon M, Porcher R, Ravaud P; CORIMUNO-19 Collaborative Group. Effect of Tocilizumab vs Usual Care in Adults Hospitalized with COVID-19 and Moderate or Severe Pneumonia: A Randomized Clinical Trial. JAMA Intern Med. 2021;181(1):32–40. PMID: 33080017 https://doi.org/10.1001/jamainternmed.2020.6820
68. CAR-T-клетки: Иммунотерапия опухолей. URL: https://www.mybeckman.ru/resources/research-areas/immunotherapy/about-car-tcells [Дата обращения 17 июня 2021 г.]
69. Shakoory B, Carcillo JA, Chatham WW, Amdur RL, Zhao H, Dinarello CA, et al. Interleukin-1 Receptor Blockade Is Associated with Reduced Mortality in Sepsis Patients with Features of Macrophage Activation Syndrome: Reanalysis of a Prior Phase III Trial. Crit Care Med. 2016;44(2):275–281. PMID: 26584195 https://doi.org/10.1097/CCM.0000000000001402
70. Monteagudo LA, Boothby A, Gertner E. Continuous Intravenous Anakinra Infusion to Calm the Cytokine Storm in Macrophage Activation Syndrome. ACR Open Rheumatol. 2020;2(5):276–282. PMID: 32267081 https://doi.org/10.1002/acr2.11135
71. Barkas F, Ntekouan SF, Kosmidou M, Liberopoulos E, Liontos A, Milionis H. Anakinra in hospitalized non-intubated patients with coronavirus disease 2019: a systematic review and meta-analysis. Rheumatology (Oxford). 2021 May 17:keab447. PMID: 33999135 https://doi.org/10.1093/rheumatology/keab447 Online ahead of print.
72. Zhang W, Zhao Y, Zhang F, Wang Q, Li T, Liu Z, et al. The use of antiinflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The Perspectives of clinical immunologists from China. Clin Immunol. 2020;214:108393. PMID: 32222466 https://doi.org/10.1016/j.clim.2020.108393
73. Stebbing J, Phelan A, Griffin I, Tucker C, Oechsle O, Smith D, et al. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect Dis. 2020;20(4):400–402. PMID: 32113509 https://doi.org/10.1016/S1473-3099(20)30132-8
74. Fact sheet for healthcare providers emergency use authorization (EUA) of baricitinib. URL: https://www.fda.gov/media/143823/download [Дата обращения 16 июня 2021 г.]
75. Kalil AC, Patterson TF, Mehta AK, Tomashek KM, Wolfe CR, Ghazaryan V, et al.; ACTT-2 Study Group Members. Baricitinib plus Remdesivir for Hospitalized Adults with Covid-19. N Engl J Med. 2021;384(9):795–807. PMID: 33306283 https://doi.org/10.1056/NEJMoa2031994
76. Marconi VC, Ramanan AV, de Bono S, Kartman CE, Krishnan V, Liao R, et al. Efficacy and safety of baricitinib in patients with COVID-19 infection: Results from the randomised, double-blind, placebo-controlled, parallelgroup COV-BARRIER phase 3 trial. medRxiv 2021.04.30.21255934. https://doi.org/10.1101/2021.04.30.21255934 Available at: https://www.medrxiv.org/content/10.1101/2021.04.30.21255934v1 [Accessed Jul 07, 2021]
77. Corticosteroids: Selected Clinical Data. URL: https://www.covid19treatmentguidelines.nih.gov/tables/table-4a/ [Accessed 17 июня 2021 г.]
78. Czock D, Keller F, Rasche FM, Häussler U. Pharmacokinetics and pharmacodynamics of systemically administered glucocorticoids. Clin Pharmacokinet. 2005;44(1):61–98. PMID: 15634032 https://doi.org/10.2165/00003088-200544010-00003
79. Jeronimo CMP, Farias MEL, Val FFA, Sampaio VS, Alexandre MAA, Melo GC, et al. Methylprednisolone as Adjunctive Therapy for Patients Hospitalized with Coronavirus Disease 2019 (COVID-19; Metcovid): A Randomized, Double-blind, Phase IIb, Placebo-controlled Trial. Clin Infect Dis. 2021;72(9):e373–e381. PMID: 32785710 https://doi.org/10.1093/cid/ciaa1177
80. Dequin PF, Heming N, Meziani F, Plantefève G, Voiriot G, Badié J, et al. Effect of Hydrocortisone on 21-Day Mortality or Respiratory Support Among Critically Ill Patients With COVID-19: A Randomized Clinical Trial. JAMA. 2020;324(13):1298–1306. PMID: 32876689 https://doi.org/10.1001/jama.2020.16761
81. Li Q, Li W, Jin Y, Xu W, Huang C, Li L, et al. Efficacy Evaluation of Early, Low-Dose, Short-Term Corticosteroids in Adults Hospitalized with Non-Severe COVID-19 Pneumonia: A Retrospective Cohort Study. Infect Dis Ther. 2020;9(4):823–836. PMID: 32880102 https://doi.org/10.1007/s40121-020-00332-3
82. Angus D C, Derde L, Al-Beidh F, Annane D, Arabi Y, Beane A, et al. Effect of Hydrocortisone on Mortality and Organ Support in Patients with Severe COVID-19: The REMAP-CAP COVID-19 Corticosteroid Domain Randomized Clinical Trial. JAMA. 2020;324(13):1317–1329. PMID: 32876697 https://doi.org/10.1001/jama.2020.17022
83. Ramakrishnan S, Nicolau DV Jr, Langford B, Mahdi M, Jeffers H, Mwasuku C, et al. Inhaled budesonide in the treatment of early COVID-19 (STOIC): a phase 2, open-label, randomised controlled trial. Lancet Respir Med. 2021;9(7):763–772. PMID: 33844996 https://doi.org/10.1016/S2213-2600(21)00160-0
84. San-Juan R, Fernández-Ruiz M, López-Medrano F, Aguado JM. Inhaled budesonide for early treatment of COVID-19. Lancet Respir Med. 2021;9(7):e58. PMID: 33991508 https://doi.org/10.1016/S2213-2600(21)00211-3
85. Lachant DJ, Lachant NA, Kouides P, Rappaport S, Prasad P, White RJ. Chronic therapeutic anticoagulation is associated with decreased thrombotic complications in SARS-CoV-2 infection. J Thromb Haemost. 2020;18(10):2640–2645. PMID: 33448631 https://doi.org/10.1111/jth.15032
86. Rivera-Caravaca JM, Núñez-Gil IJ, Vivas D, Viana-Llamas MC, Uribarri A, Becerra-Muñoz VM, et al. Clinical profile and prognosis in patients on oral anticoagulation before admission for COVID-19. Eur J Clin Invest. 2021;51(1):e13436. PMID: 33080051 https://doi.org/10.1111/eci.13436
87. Llitjos J-F, Leclerc M, Chochois C, Monsallier J-M, Ramakers M, Auvray M, et al. High incidence of venous thromboembolic events in anticoagulated severe COVID-19 patients. J Thromb Haemost. 2020;18(7):1743–1746. PMID: 32320517 https://doi.org/10.1111/jth.14869
88. Martin TA, Wan DW, Hajifathalian K, Tewani S, Shah SL, Mehta A, et al. Gastrointestinal Bleeding in Patients with Coronavirus Disease 2019: A Matched Case-Control Study. Am J Gastroenterol. 2020;115(10):1609–1616. PMID: 32796176 https://doi.org/10.14309/ajg.0000000000000805
89. Shah A, Donovan K, McHugh A, Pandey M, Aaron L, Bradbury CA, et al. Thrombotic and haemorrhagic complications in critically ill patients with COVID-19: a multicentre observational study. Crit Care. 2020;24(1):561. PMID: 32948243 https://doi.org/10.1186/s13054-020-03260-3
90. Horby PW, Pessoa-Amorim G, Staplin N, Emberson JR, Campbell M, Spata E, et al. Aspirin in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. medRxiv 2021.06.08.21258132 https://doi.org/10.1101/2021.06.08.21258132 URL: https://www.medrxiv.org/content/10.1101/2021.06.08.21258132v1 [Дата обращения 7 июля 2021 г.]
91. Leentjens J, van Haaps TF, Wessels PF, Schutgens REG, Middeldorp S. COVID-19-associated coagulopathy and antithrombotic agents-lessons after 1 year. Lancet Haematol. 2021;8(7):e524–e533. PMID: 33930350 https://doi.org/10.1016/S2352-3026(21)00105-8
92. Pereira AA, de Oliveira Andrade A, de Andrade Palis A, Cabral AM, Lima Barreto CG, de Souza DB, et al. Non-pharmacological treatments for COVID-19: current status and consensus. Research on Biomedical Engineering. 2021;1–16. PMCID: PMC7809889 https://doi.org/10.1007/s42600-020-00116-1 [Epub ahead of print]
93. Журавель С.В., Гаврилов П.В., Кузнецова Н.К., Уткина И.И., Талызин А.М., Александрова В.Э. Клинический случай: термический гелий в лечении пневмонии, вызванной новой коронавирусной инфекцией COVID-19 (SARS-CoV-2). Вестник медицинского института «Реавиз». Реабилитация, Врач и Здоровье. 2021;1(49):5–10. https://doi.org/10.20340/vmi-rvz.2021.1.COVID.1
94. Левина О.А., Евсеев А.К., Шабанов А.К., Кулабухов В.В., Кутровская Н.Ю., Горончаровская И.В. и др. Безопасность применения гипербарической оксигенации при лечении COVID-19. Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь». 2020;9(3):314–320. https://doi.org/10.23934/2223-9022-2020-9-3-314-320
95. Шогенова Л.В., Варфоломеев С.Д., Быков В.И., Цыбенова С.Б., Рябоконь А.М., Журавель С.В. и др. Влияние термической гелий-кислородной смеси на вирусную нагрузку при COVID-19. Пульмонология. 2020;30(5):533–543. https://doi.org/10.18093/0869-0189-2020-30-5-533-543
Рецензия
Для цитирования:
Васильченко М.К., Иванников А.А., Эсауленко А.Н., Алиджанова Х.Г., Петриков С.С. COVID-19 и сердечно-сосудистая система. Часть III. Подходы к лечению COVID-19: обзор современной доказательной базы. Журнал им. Н.В. Склифосовского «Неотложная медицинская помощь». 2021;10(3):438-451. https://doi.org/10.23934/2223-9022-2021-10-3-438-451
For citation:
Vasilchenko M.K., Ivannikov A.A., Yesaulenko A.N., Alidzhanova Kh.G., Petrikov S.S. COVID-19 and Cardiovascular System. Part 3. COVID-19 Current Treatment Approaches: Evidence-Based Review. Russian Sklifosovsky Journal "Emergency Medical Care". 2021;10(3):438-451. https://doi.org/10.23934/2223-9022-2021-10-3-438-451