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BACKGROUND The most important part of the state social and economic policy is optimization of the healthcare system, where the loss of public health leads to economic damage. 
Against this background, forecasting the work of medical institutions is the basis for the successful development of healthcare, despite the fact that the healthcare system, indicators 
and standards of medical and social welfare are still not stable, and a clear development strategy for the short- and long-term period has not been worked out. 
AIM OF STUDY Determining the most optimal method for predicting the work of a medical institution, based on identification of the main trends in the time series when constructing a 
model of the dependence of parameters or determining the behavior of data as a stochastic series (i.e. modeling random processes and random events with some random error). 
MATERIAL AND METHODS To predict the main statistical indicators of N.V. Sklifosovsky Research Institute for Emergency Medicine based on a retrospective analysis, data were used 
that were submitted to the City Bureau of Medical Statistics and entered into official reporting forms (form № 30, approved by Goskomstat of the Russian Federation dated September 
10, 2002, № 175): the number of hospitalized patients and mortality rates in inpatient and intensive care units. 
To select the optimal methodology for the experimental forecast model, data were used for the period from 1991 to 2016. Indicators for 2017 were taken as control values. 
RESULTS As a result of the comparison of several methods (moving averages, least squares approach, Brown model, Holt–Winters method, autocorrelation model, Box–Jenkins method) 
as applied to the work of N.V. Sklifosovsky Research Institute for Emergency Medicine, the Holt–Winters model was chosen as the most appropriate one for the data characteristics. 
FINDINGS 1. When using methods of moving averages, least squares, Box-Jenkins, as well as Brown model and autocorrelation, the forecast result is not always influenced by strictly 
straight-line indicators of the time series, due to the heterogeneity of the time series and the presence of outliers (often found in a medical institution providing emergency care), which 
lead to a significant decrease in the reliability of forecasting. 
2. The application of the Holt–Winters model, which takes into account the exponential trend (the trend of time series indicators) and additive season (periodic fluctuations observed in 
the time series), is most suitable for processing statistical data and forecasting for long-term, medium-term and short-term periods taking the specifics of a hospital providing emergency 
care into account. 
3. The choice of the optimal method for predicting the work of a medical institution, based on the identification of the main trends in the time series, taking most of the features in the 
modeling of random processes and events into account, allowed to reduce the relative forecast error. 
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AR — autoregressive model 
ARIMA — autoreressive integrated moving average model 
ARMA — autoregressive moving average model 
МА — moving-average model 

 
RELEVANCE 

Forecasting the main statistical indicators of work in a medical institution providing emergency care is a complex of reasoned assumptions 
(expressed in qualitative and quantitative forms) regarding the structure of medical care in the future, which allows to predict events based on 
factors and trends for making appropriate administrative decisions correctly and fully, development of adequate preventive measures that will 
make it possible to avoid unwanted results in providing and medical care to patients. [1] 

Since the forecast of the work of a medical institution is based on the probabilistic development of events, then, according to the Federal Laws 
(FL) dated July 20, 1995 N 115- FL "On State Forecasting and Socil and Economic Development Programs of the Russian Federation", Federal 
Law dated July 21, 2011 N 323- FL “On the Fundamentals of Protecting the Health of Citizens in the Russian Federation”, Federal Law dated 
November 29, 2010 N 326- FL “On Compulsory Medical Insurance in the Russian Federation”, depending on the tasks to build mathematical 
models in order to optimize the process of medical care as well as planning of various methods (including logistics and accounting for possible 



economic costs), exhaustive retrospective information is necessary based on statistical performance indicators for a significant (at least 10–12 
years) observation period [2].     

One of the promising directions for the development of forecasting is associated with adaptive methods. These methods allow you to build 
self-correcting models that can quickly respond to changing conditions [3]. Adaptive methods take into account the different informational value 
of the levels of the series and the “aging” of information. All this makes their use effective for forecasting unstable series with a changing trend. 
In adaptive methods, the different value of levels depending on their “freshness” can be taken into account using the system of weights attached 
to these levels. 

Many of the basic forecasting methods are more likely to relate to individual techniques or procedures, others are packages of methods and 
differ from each other in the number of private techniques and/or the sequence of their application [4]. 

According to the degree of formalization, all forecasting methods are divided into intuitive and formalized (Fig. 1). Intuitive forecasting is 
used when the object is so complex that it is almost impossible to analytically take into account the influence of many factors. Formalized forecasts 
are built using methods of computational mathematics and allow you to get the most reliable data in a shorter time. 

  

 

Fig. 1. The distribution of basic techniques and methods 
Notes: AR — autoregressive model; ARIMA — autoregressive integrated moving average model; ARMA — autoregressive moving average model; MA — moving-average model 
  
When choosing forecasting methods, an important indicator is the forecast forecast depth. Moreover, it is necessary not only to know the 

absolute value of this indicator, but also to attribute it to the duration of the evolutionary cycle of development of the forecasting object. 
MATERIAL AND METHODS 

For forecasting based on a retrospective analysis of the main statistical indicators of the N.V. Sklofosovsky Research Institute for Emergency 
Medicine for the period from 1991 to 2017, we used the data submitted to the City Bureau of Medical Statistics and entered into the official 
reporting forms (form N 30 approved by Goskomstat of the Russian Federation dated September 10, 2002, N 175): average day of work of a bed 
in a year, bed turnover, average bed-day, mortality rates in inpatient and intensive care units. To select the optimal methodology for the 
experimental forecast model, we used data from 1991 to 2016. In this case, the 2017 indicators were taken as reference values.   

Several methods were selected based on the alignment of time series or the experimental forecast model of the main indicators characterizing 
the work of N.V. Sklofosovsky Research Institute for Emergency Medicine: 

- moving average smoothing; 
- least squares method; 
- Brown model; 
- Holt-Winters method ; 
- autocorrelation model; 
- Box-Jenkins method. 
These methods were applied to data using the free software environment R v3.5.1 ( The R Project for Statistical Computing). 

EVALUATION OF METHODS 
When using forecasting methods, it is extremely important to evaluate the statistical significance of the resulting model and its forecast. These 

may be the coefficient of determination R2 , the Type I error p-value and the Akaike's criterion AIC. 
The determination coefficient R 2 is calculated by the formula: 
  

 
where σ2 (y|x) is the conditional variance, σ2 (y) is the variance of the model data. The obtained value varies from 0 to 1 and is considered as 

the percentage of real data that describes the resulting model. Accordingly, in order to recognize the model as statistically significant, the coefficient 
of determination should not be lower than 0.5, and should exceed 0.8 for very good models.   

The p-value actually means the probability of a hypothesis rejecting when it is correct, that is (in relation to forecast models) the probability 
of real data will deviate from the forecast in the future. The smaller the p-value , the more statistically significant the results. Traditionally, the p-
value level is set to 5% or less. Based on a more accurate forecast, the level can be set from 0.5% or less. 

The Akaike criterion was suggested as an alternative to the coefficient of determination. 
AIC = 2k - 2ln(Lmax), 
where k is the number of model parameters, L max is the maximum likelihood function of the model. The Akaike criterion cannot describe 

statistical significance itself and cannot be interpreted, however, in each specific case, it calculates its “relative weight” for each forecast; when 
comparing them, the prognosis is considered to be the best if for it the AIC value is the lowest. 

For a more complete comparison, we will calculate these three estimates and compare different methods with their help. 
LINEAR LEAST SQUARES METHOD 

The time series for which the forecast is made is a set of values {y} ni=1 for several points {x} ni=1. The simplest prediction method is to assume 



that y has a formula dependence on x with unknown parameters α: yi=y ӯ(α, xi). 
The basis of the least squares method is that the best approximation to real data is to minimize the sum of the squared differences between the 

actual level and the theoretical one: 
   (Formula 1) 
The least squares method is the main method for determining the parameters of various models and is often used in regression analysis and 

forecasting. In the future, we will refer to this method in the description of other forecasting models [5–8]. 
The type of the function ӯ (α, x) is selected using expert estimates, it can be a linear dependence, quadratic, exponential, etc. In the simplest 

case, a linear relationship is selected:  
ӯi (α, x) = α1x + α0 , 
where ӯ — aligned levels, α0 — the initial level of the series; α1 — the initial speed of the series; x — the time interval. Thus, its main trend 

is distinguished from the time series: for α1<0, the values decrease with increasing time x, and for α1>0 they increase.  
In the general case, the coefficients α are calculated by the formulas: 
  

 
Provided that the sum of the time intervals is zero (∑ xi=0), the values α0 and α1 are calculated by the formulas:  
  

 
where y are the levels of the series, n is the number of levels of the series. 
The average predictive indicator is determined by continuing calculations of ytheor. Exactly ytheor  of the next year is the average predictor ( yav  

pred). When calculating by the formula: 
yav pred = yav + (α1x) 
The value x takes the next value with the same step as before (that is, 1 or 2 is added to the last value of x). 
To determine the boundary values of the average predictive indicator, it is necessary to calculate its maximum and minimum values (ymax pred) 

and (ymin pred). To calculate ymax pred and ymin pred the values of ∑ Δ + and ∑ Δ- were used. Wherein: 
ymax pred, where Δav  is the average deviation up from the trend line, and n is the number of years above the trend line. 
ymin pred, where Δav is the average deviation down from the trend line, and n is the number of years below the trend line. 
To construct a linear dependence with respect to our data, we used the lm function from the standard stats package of the R program . The 

linear model allows you to see the trend line in the data clearly. Over 15 years, the total number of revenues and the number of admissions to 
intensive care has grown, while deaths and mortality have fallen. However, while in the case of total mortality and the number of deaths in a 
hospital, real data are in good agreement with the linear trend, then in the case of the number of admissions and the number of deaths, random 
outliers make prediction more difficult, and the reliability of the forecast is greatly reduced (Fig. 2).  

  

 
Fig. 2. Linear models for data on admissions, in-hospital deaths, intensive care deaths, general mortality, admission to intensive care, deaths in various departments. Dots show real data, 
crosses show values for 2017 

  
Unfortunately, not a single real value for 2017 fell within the calculated boundary values, which is caused by overly sharp jumps. Confidence 

intervals are too large to indicate statistical significance of the forecast. The results of the evaluation of the models are given in table 1. 
 

  



T a b l e  1  
Characteristics of linear models for each data set 

Forecast value  R2 AIC 
Admitted totally 0.58 491.9 
Died totally 0.29 345.6 
Died in intensive care units 0.02 332.6 
General mortality rate 0.83 44.2 
Admitted to intensive care units 0.32 408.5 
In-hospital deaths 0.63 301.0 

 
As can be seen in Table 1, the best result was achieved for general mortality due to the large similarity of data behavior with the line. The 

number of admissions and the number of deaths in a hospital are described partially directly, since unsteady behavior is observed prior to 2000 for 
mortality and after 2010 for admissions. The most unreliable prognosis of the annual number of patients who died in intensive care, too high rises 
and unpredictable outliers prevent from constructing a line, and even the tendency for data to persistently decrease or rise remains in doubt.   

Thus, the advantages of the least squares method of the linear model in relation to the work of a medical institution are the possibility of 
determining the development trend to increase or decrease with determination of its severity, but the forecast based on it has insufficient accuracy. 
MOVING AVERAGE MODEL (MA) 

This method works well if the data is the sum q of white noises: 
 (Formula 2) 
where x are terms of the series, b are the model parameters, and ε is white noise. That is, subsequent values of the time series accumulate errors 

of the previous ones.  
The first-order equation can be rewritten in another way: 
  
That is, each subsequent value is based on the previous ones, all with weights tending to zero. 
The essence of the method is that the actual performance of the dynamic series is replaced by a theoreticalcally expected one by averaging two 

or three adjacent actual indices. Thus, a clear trend is seen. The larger the window, the greater the significance of the resulting trend, however, 
minor changes eliminate during the process. 

Simple moving average is calculation using 2n points using the arithmetic mean: 

  
Weighted moving average is calculation using n points regarding higher and lower significance of individual values based on the arithmetic 

progression; 

  
When calculating the moving average for all periods, the forecast is built for one period according to the formula: 

 
where t + 1 is the forecast period; t is the period preceding the forecast period (year, month, etc.); y t + 1 is the predicted indicator; m t –1 is 

moving average for two periods before the forecast; n is the number of levels included in the smoothing interval; y t is the actual value of the 
investigated phenomenon for the previous period; y t –1 is the actual value of the investigated phenomenon for two periods preceding the forecast. 

To construct a moving average and its predicted values, the ma function from the forecast package of program R is used. Figure 3 shows the 
results of applying the moving average method for hospital statistics. The graphs show that this method gives good predictive estimates of data on 
total mortality and deaths in wards. However, the number of admissions and deaths in the hospital are predicted worse. Table 2 shows that the 
moving average method is more statistically significant in comparison with the linear least-squares method, since its determination coefficient is 
higher for all predicted values. 

 

 
 

Fig. 3. Smoothing by the moving average for data on admissions, in-hospital deaths, intensive care deaths, general mortality, admission to intensive care, deaths in various departments. 
Dots show real data, crosses show values for 2017 



T a b l e  2  
Characteristics of the moving average models for each data set 

 
 
 
 
 
 
 

Admission to the intensive care unit and the number of deaths in intensive care units cannot be predicted with good accuracy due to the 
resulting difference in real and predicted values. 
BROWN MODEL 

In the Brown model, also known as the exponential smoothing method, the time series is smoothed using a weighted moving average, in which 
the values obey the exponential law. 

The idea of the method is that the predicted value ӯt + 1 is determined through the previous c predicted value ӯ t , but adjusted with a certain 
coefficient by the deviation of the fact yt  from the forecast: ӯt+1 = ӯt + α(yt – ӯt). Quite often this model is presented as ӯt+1 = αyt + (1–α) ӯt . However, 
the meaning of the model does not change from this: it adapts to one degree or another (depending on the value of the coefficient α) to new 
incoming information. 

The exponential smoothing method is similar to the moving average method. They have a common main principle that each point depends on 
the values of neighboring ones with some weights. The main differences of the Brown method is that the initial value is not affected and remains 
unchanged, as we move away from the initial data, the weights exponentially tend to zero, in addition, the data is smoothed not in the center, but 
in the nearest previous value. 

In general, the Brown model can be applied in two cases:  
- when it is necessary to smooth the existing data series to identify trends (usually in the case of stationary processes with a small error of each 

measurement), the value α is set in the range from 0 to 1; 
- when a short-term forecast is needed. In this case, the best forecast result is obtained when α is set in the range from 0 to 2. 
There is no standardized way to find the parameter α for all cases. Depending on the length of the smoothing interval n, the parameter is 

calculated as α=2/(n+1). The optimal parameter can be obtained by minimizing the forecast errors with respect to α (formula 1). 
Fig. 4 shows the results of forecasting statistics obtained as a result of applying the Brown model. In general, we can say that the model predicts 

data worse than a simple sliding window method. This can be explained by rapid changes in the considered indicators, to which the system was 
not able to respond. 

 
Fig. 4. : Exponential smoothing for data on admissions, in-hospital deaths, intensive care deaths, general mortality, admission to intensive care, deaths in various departments. Dots show 
real data, crosses show values for 2017 

  
Table 3 shows that the coefficient of determination for all predicted values of the Brown model is lower than when using the moving average 

method. 
  

T a b l e  3  
The Brown model characteristics for each data set 
 

Forecast value  R2 AIC 
Admitted totally 0.93 474.9 
Died totally 0.91 332.6 
Died in intensive care units 0.89 330.3 
General mortality rate 0.92 39.8 
Admitted to intensive care units 0.49 412.6 
In-hospital deaths 0.67 288.3 

Since the changes in the predicted data are discontinuous, the Brown model gives statistically insignificant results. 
  

Forecast value  R2 AIC 
Admitted totally 0.96 402.4 
Died totally 0.94 278.1 
Died in intensive care units 0.94 274.7 
General mortality rate 0.96 9.5 
Admitted to intensive care units 0.95 349.6 
In-hospital deaths 0.83 233.5 



HOLT–WINTERS METHOD 
The Holt-Winters method is a modification of the exponential smoothing method for seasonal series. This method also takes into account the 

exponential trend (the trend of the time series) and additive seasonality (periodic fluctuations observed in the time series) [9, 10]. 
The model has two forms, depending on the seasonal component, either additive or multiplicative. 
Let y0…yt, yi ∈R be a time series. It is necessary to solve the problem of forecasting the time series: 
  

 
where s is the seasonality period, Θi, i ∈ [0, s–1] is the seasonal profile, rt is the trend parameter, at is the forecast parameter cleaned of the 

influence of trend and seasonality. Accordingly coefficient α ∈ [0, 1] indicates how much quantities depend on previous values, β ∈ [0, 1] shows 
the importance of seasonality and  γ ∈ [0, 1] shows whether the data has pronounced clear trend.     

It is suggested ti find optimal parameters α, β, γ experimentally. 
To construct a model of Holt - Winters we use the Holt-Winters function of the standard package stats of R program and forecast package for 

its further prediction. Optimal parameters α, β, γ are found by minimizing the squared deviations (formula 1). However, the frequency of repetition 
of the values must be set manually, based on the type of data. To identify seasonality, it was suggested to draw up a graph of autocorrelation with 
a significant level of 0.4.  

Figure 5 shows the graphs constructed for the studied indicators by the Holt-Winters method. It can be seen from them that, unlike the moving 
average method, the model did not smooth out the peaks and dips, but included them in the trend. 

 
Fig. 5. The Holt-Winters model for data on admissions, in-hospital deaths, intensive care deaths, general mortality, admission to intensive care, deaths in various departments. Dots show 
real data, crosses show values for 2017 

  
As can be seen from the Table 4, the Holt-Winters method allowed good results to be achieved. All random outliers (opening, closure of wards 

and intensive care units, overload or underload etc.) were smoothed out, but seasonal fluctuations remained, so the predicted values are closest to 
the real data. 

  
T a b l e  4  
Characteristics of Holt-Winters models for each data set 
 

Forecast value  R2 AIC 
Admitted totally 0.93 479.3 
Died totally 0.89 343.5 
Died in intensive care units 0.88 338.8 
General mortality rate 0.91 46.8 
Admitted to intensive care units 0.91 417.6 
In-hospital deaths 0.68 294.6 
 
  



AUTOREGRESSIVE MODEL (AR) 
Using AR models, the seasonality of a time series is modeled. This model is built on the assumption that each member of the time series is 

formed with the help of p previous members, that is, the model has some data delay: 
  

 (Formula 3) 
where y are the members of the series, c = const is a constant level, a are the autoregression coefficients, εt is white noise. 
Thus, the model already has a forecast for p steps forward with the available initial values {yi}. The most rational way to determine the 

parameters of the autoregressive equation is to use the least squares method (formula 1). 
However, the main task is to search for the order of autoregression p. 
The results of applying the autoregressive model are shown in Fig. 6. Since modeling by this method provides for the preservation of previous 

periods, when predicting the total mortality and the number of deaths in a hospital, the model took into account the initial jumps in values and 
subsequently could not correctly display the decrease in these indicators. 

 

 
Fig. 6. Autoregressive model for data on admissions, in-hospital deaths, intensive care deaths, general mortality, admission to intensive care, deaths in various departments. Dots show 
real data, crosses show values for 2017 

Table 5 shows that this model approximates the data worse than the Holt-Winters model. 
Since our data have sharp changes in values, this forecasting method turned out to be unproductive. With a uniform number of admissions 

(until 2012), the model provided an adequate forecast, but with a sharp increase in the number of hospitalizations since 2012, the predicted data 
began to differ significantly from the real ones.  

  
T a b l e  5  
Characteristics of autoregressive models for each data set 

Forecast value  R2 AIC 
Admitted totally 2150786 464.22 
Died totally 8744 319.5 
Died in intensive care units 9491 318.55 
General mortality rate 0.1532 35.61 
Admitted to intensive care units 244620 403.5 
In-hospital deaths 5919 306.48 
 
AUTOREGRESSIVE MODEL - MOVING AVERAGE (ARMA) 

As the name implies, this model is the sum of autoregression (formula 3) — data lag — and a sliding window (formula 2): 
  
Since we have already estimated the parameters p and q for the last two models, the same values were taken for calculations. The least squares 

method was used to estimate the coefficients of the independent variables of the model. 
Fig. 7 and Table 6 show the results of forecasting the studied indicators using the ARMA model. This model is well suited for predicting data 

that stably maintains its dynamics over the entire considered time period. Since this condition is not fulfilled for our data, the values predicted by 
this method turned out to be different from the real ones. 

 



 

 
Fig. 7. The model of autoregression and moving average for data on admissions, in-hospital deaths, intensive care deaths, general mortality, admission to intensive care, deaths in various 
departments. Dots show real data, crosses show values for 2017 

 
T a b l e  6  
Characteristics of autoregressive models for each data set 
 

Forecast value  R2 AIC 
Admitted totally 1607957 466.84 
Died totally 5606 319.61 
Died in intensive care units 8142 321.59 
General mortality rate 0.1331 38.96 
Admitted to intensive care units 213385 406.43 
In-hospital deaths 4553 308.57 

  
The predicted values obtained by the ARMA method are worse than those obtained by the simple autoregressive method, since some of the 

real data has a large amplitude, which the model takes as the basis for further forecasting. This is clearly visible on the chart " Deceased in the 
Hospital." 
BOX–JENKINS MODEL (ARIMA) 

The so-called integrated model of autoregression — a moving average, an extended version of the ARMA model. ARIMA is based on the 
assumption that the data has autoregression (Formula 3), noise effect (Formula 2), and integration . 

  
 

Data integration implies the presence of a stable difference of some order. That is, Δd хt=xt-d – xt  ∀t retains its type and behavior.   
The model is often used to predict time series and has many improvements and variations. The method is considered accurate enough to receive 

both short-term and long-term forecasts that do not require a separate assessment. However, to construct a model of the ARIMA type, a larger data 
set and their comprehensive analysis are required [11]. 

The model parameters are p, d, q, that is, the order of delay, the order of conservation of residuals, and the size of the sliding window. 
The results of forecasting by the ARIMA method are shown in Fig. 8 and Table 7. According to the Table 7, this method turned out to be 

statistically weakly significant of all the above, since it provides at least 40 time points for forecasting. The graphs show that the simulated data 
differ a lot from the real ones. 

 



 

Fig. 8. The model of autoregression and moving average for data on admissions, in-hospital deaths, intensive care deaths, general mortality, admission to intensive care, deaths in various 
departments. Dots show real data, crosses show values for 2017 

 
T a b l e  7  
Characteristics of autoregressive models for each data set 

Forecast value  R2 AIC 
Admitted totally 1843255 446.71 
Died totally 6893 306.98 
Died in intensive care units 10767 313.15 
General mortality rate 0.1069 31.31 
Admitted to intensive care units 222159 389 
In-hospital deaths 5466 296.82 

  
Due to the small number of values analyzed, the use of the ARIMA method gave poor forecasting results, although it is considered a universal, 

reasonable and reliable forecasting method. In the future, we plan to apply it to a larger sample, breaking the data of each year quarterly. 
RESULTS AND DISCUSSION 

On the example of the study, we can state: 
1. The linear least-squares method is applied only if you need to know the general long-term tendency of the series to increase or decrease. 

If the data has fluctuations, then the method will not be able to catch them. An important advantage of the least squares method is that it evens out 
data that had some calculation error, and the estimate obtained with its help is better than any other [12]. The method is used to solve data 
smoothing, interpolation and extrapolation problems. 

Thus, the advantages of the least squares method of the linear model in relation to the work of a medical institution are in determining the 
development trend towards growth or decrease with the possibility of assessing its severity, but the forecast based on it has insufficient accuracy. 

2. The moving average method is well adapted for evenly fluctuating data and can give good results even with uneven data. The sliding 
window is widely used for preliminary processing in other types of prediction and analysis, as it allows to exclude the influence of the random 
component. However, with strong jumps closer to the "future", it may fail. The disadvantage of this method is its locality. It does not respond to 
data in general and cannot predict a sharp change in data behavior, relying only on the nearest points [13]. 

3. The Brown method is suitable for data with a dependence on previous values and without strong amplitude fluctuations. Exponential 
smoothing is the most common method for predicting different time series. Its main advantages are rather simple calculations and the flexibility 
to describe different changes. The method of exponential smoothing allows you to get estimates of trend parameters that describe not the average 
level of the phenomenon, but the trend that has developed at the time of the last observation. For this method, it is very important to choose the 
smoothing parameters and the initial conditions. The forecasting method under consideration is quite effective and reliable. But it helps predict 
the process only in the short term, i.e. only 1-2 years ahead [14, 15].  

4. The Holt–Winters method is universal for the above features, however, a strict determination of seasonality is needed for the data [16]. 
Perhaps this method would give better results if we split the data quarterly. 

The Holt-Winters method can be used: 
- in strategic planning: the construction of the main development trend (trend) makes it possible to take into account the upward or downward 

dynamics of the investigated phenomenon; 
- during operational and tactical planning: the revealed seasonal component allows us to note the uneven distribution of volumes over the years 

in relation to this dynamics. 
Exponential smoothing takes into account internal declines and rises in a number of dynamics. It can be used to identify large ups and downs 

in advance (when applying tactical planning) and be prepared for them. Thus, the method has a fairly large scope. This method is based on the use 
of a large amount of statistical data, which may not always be relevant. The Holt-Winters method can be used in combined forecasting 
simultaneously with expert forecasting methods. 

5. The autoregressive model is similar to the Brown model, a large number of jumps does not allow the model to tune. The use of 
autoregressive models is based on a preliminary analysis, when it is known that the process under study is largely dependent on its development 
in previous periods. In some cases, they are used to find a simple transformation leading to a sequence of independent random variables. The scope 
of the autoregressive model is limited, because in addition to seasonal changes, it does not describe anything. It is rarely used alone. In most cases, 
a more flexible model is used, including a sliding window [15]. 



6. The autoregressive moving average model may be applicable under the assumption that the time series is stable, that is, its properties do 
not change over time. 

7. The Box – Jenkins model can be applied to a large number of data types, but it requires a larger sample (about 40 points for a good forecast) 
and a thorough study of the behavior of the time series [11]. The disadvantage is that constructing a satisfactory ARIMA model is expensive and 
time consuming. 

Until 1982, it was widely believed among forecasters that ARIMA models provide the most accurate predictions, since they are more general 
for a class of other models. However, after conducting the first tests of the forecasting accuracy of various models within the framework of the 
“М-Competition” of the International Institute of Forecasters, during which the ARIMA models showed themselves no better than the models of 
exponential smoothing, this opinion was replaced by a completely logical idea that in each case it is necessary to use own model [16]. 
FINDINGS 

1. When using methods of smoothing by moving average, least squares, Box–Jenkins, as well as Brown models and autocorrelation, the 
forecast result is affected by the heterogeneity and the presence of intermittent changes in indicators, which lead to a significant decrease in the 
reliability of forecasting. 

2. The application of the Holt-Winters model, which considers the exponential trend (the trend of time series) and additive seasonality (periodic 
fluctuations observed in the time series), is most suitable for processing statistical data and forecasting for long-term, medium-term and short-term 
periods taking into account the specifics of a hospital, providing emergency and acute care. 

3. The choice of the optimal method for predicting the work of a medical institution, based on identification of the main trends in the time 
series, taking into account most features when modeling random processes and random events with some random error, allowed us to reduce the 
relative forecast error. 
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