Научная статья

https://doi.org/10.23934/2223-9022-2025-14-2-328-337

Эффективность применения интраоперационного ультразвукового контроля при удалении инородных тел мягких тканей, локализованных в областях со сложной хирургической анатомией, после огнестрельных осколочных ранений

Б.М. Белик^{1,2 ⊠}, А.Р. Дадаян¹, Р.Ш. Тенчурин^{1,2}

Кафедра общей хирургии

¹ ФГБОУ ВО «Ростовский государственный медицинский университет» МЗ РФ Российская Федерация, 344022, Ростов-на-Дону, пер. Нахичеванский, д. 29

² ГБУ Ростовской области «Центральная городская больница им. Н.А. Семашко» 344010, Российская Федерация, Ростов-на-Дону, пр. Ворошиловский, д. 105

⊠ **Контактная информация:** Белик Борис Михайлович, доктор медицинских наук, заведующий кафедрой общей хирургии ФГБОУ ВО «Ростовский государственный медицинский университет» МЗ РФ. Email: bbelik@yandex.ru

АКТУАЛЬНОСТЬ

Наибольшие технические сложности при хирургическом удалении инородных тел после огнестрельных осколочных ранений (ООР) мягких тканей возникают при глубоком расположении осколков вблизи крупных сосудов, нервных стволов и в области сухожильно-связочного аппарата конечностей. На текущий момент практически отсутствуют сведения о возможностях удаления осколков мягких тканей, локализованных в областях со сложной хирургической анатомией, с применением интраоперационного ультразвукового контроля (ИУЗК).

ЦЕЛЬ ИССЛЕДОВАНИЯ

Оценить эффективность применения ИУЗК при удалении инородных тел мягких тканей, локализованных в областях со сложной хирургической анатомией, после ООР.

МАТЕРИАЛ И МЕТОДЫ

Проведён сравнительный анализ результатов хирургического лечения 74 пациентов с ООР мягких тканей, у которых инородные тела локализовались в труднодоступных анатомических зонах вблизи крупных сосудов, нервных стволов, а также в толще сухожильно-связочного аппарата конечностей. У 26 пациентов (1-я группа) инородные тела удаляли традиционным хирургическим способом. У 5 пациентов в ходе традиционной операции дополнительно применяли рентгеноскопический контроль (*C*-дугу). У 48 пациентов (2-я группа) инородные тела удаляли в условиях применения ИУЗК.

РЕЗУЛЬТАТЫ

У пациентов 1-й группы в ходе традиционного хирургического вмешательства в 19,2% случаев не удалось визуализировать и удалить инородное тело. При удалении инородных тел мягких тканей в условиях дополнительного применения рентгеноскопического контроля в 3 случаях отмечали повреждение крупных нервных стволов, в 1 случае - пересечение сухожилия в различных сегментах конечностей. У 38,5% пациентов операцию выполняли под наркозом. Средняя длина разреза для удаления осколка составила 18 см (14; 21). Средняя продолжительность оперативного вмешательства — 150 минут (90; 210). В 1-й группе у 5 пациентов (19,2%) развились послеоперационные раневые инфекционные осложнения. Средние сроки пребывания пациентов в стационаре составили 10 суток (7; 18). У пациентов 2-й группы применение ИУЗК позволяло чётко визуализировать инородное тело в мягких тканях и близлежащие анатомически важные структуры, что обеспечивало безопасное выполнение закрытых хирургических манипуляций в ране в ходе экстракции осколка. У данных пациентов операцию выполняли под местной анестезией. Положительный результат вмешательства (удаление инородного тела) достигнут во всех случаях. Средняя длина операционного разреза составила 1,5 см (0,9; 2,1). Средняя продолжительность вмешательства -18 минут (11;24). Во 2-й группе больных в послеоперационном периоде раневых инфекционных осложнений не отмечалось. Средние сроки пребывания пациентов в стационаре — 4 суток (3; 5).

ЗАКЛЮЧЕНИЕ

Применение интраоперационного звукового контроля при удалении инородных тел мягких тканей, локализованных в труднодоступных и «опасных» анатомических зонах, позволяет значительно повысить эффективность хирургического лечения пациентов с огнестрельными осколочными ранениями за счёт чёткой визуализации всех этапов экстракции осколка, оптимизации хирургического доступа и оперативного приёма, что значительно уменьшает степень травматизма вмешательства и сокращает время его выполнения.

Ключевые слова:

огнестрельные осколочные ранения, удаление инородных тел мягких тканей, хирургическая анатомия, интраоперационный ультразвуковой контроль

© Белик Б.М., Дадаян А.Р., Тенчурин Р.Ш. М., 2025

Ссылка для цитирования

Белик Б.М., Дадаян А.Р., Тенчурин Р.Ш. Эффективность применения интраоперационного ультразвукового контроля при удалении инородных тел мягких тканей, локализованных в областях со сложной хирургической анатомией, после огнестрельных осколочных ранений. Журнал им. Н.В. Склифосовского Неотложная медицинская помощь. 2025;14(2):328-337. https://doi. org/10.23934/2223-9022-2025-14-2-328-337

Конфликт интересов Автор заявляет об отсутствии конфликта интересов

Благодарность, финансирование Исследование не имеет спонсорской поддержки

ИУЗК — интраоперационный ультразвуковой контроль ООР — огнестрельные осколочные ранения

УЗ — ультразвуковое (ая)

ВВЕДЕНИЕ

Современные локальные военные конфликты характеризуются широким применением различных боеприпасов взрывного действия с поражающими элементами, результатом воздействия которых являются множественные осколочные ранения мягких тканей у пострадавших лиц. Согласно статистическим данным, в ходе военного конфликта на Донбассе преобладающую часть составили слепые огнестрельные осколочные ранения (ООР) мягких тканей различной локализации, доля которых достигала 80-85% к общему количеству ранений [1]. В этих условиях основной задачей медицинской службы на этапе оказании специализированной хирургической помощи является оптимизация способов и методов лечения, способствующих быстрому восстановлению раненых после огнестрельных осколочных повреждений.

Современная доктрина лечения боевой хирургической травмы не предусматривает проведения первичной хирургической обработки ран при множественных мелких слепых некровоточащих осколочных ранениях мягких тканей любой локализации. По данным Главного военно-медицинского управления Министерства обороны Российской Федерации, в ходе современных военных конфликтов первичная хирургическая обработка ран не показана у 48% раненых с повреждениями мягких тканей. В этом случае лечение ограничивается туалетом раны с последующим наблюдением за состоянием тканей в зоне повреждения [2]. Однако неудалённый осколок, оставленный в мягких тканях, является фактором риска развития серьёзных раневых инфекционных осложнений (включая анаэробную инфекцию, а также вторичное кровотечение, обусловленное пролежнем инородным телом и (или) гнойным расплавлением стенки сосуда). Кроме того, осколки, расположенные вблизи нервных стволов и в толще сухожильно-связочного аппарата, провоцируют формирование стойкого болевого синдрома и неврологической дисфункции повреждённой конечности [3].

Вместе с тем в ходе проведения первичной хирургической обработки ран удалить осколок из мягких тканей удаётся только в 20% случаев. Поэтому осколки, глубоко расположенные в толще крупных мышечных массивов (поясничная область, бедро, ягодицы), а также вблизи магистральных сосудов и нервных стволов (шея, паховая, подколенная, подмышечная области) нередко не удаляются в связи с повышенным риском хирургического вмешательства и высокой вероятностью неудачного исхода операции [4]. Традиционные операции по экстракции осколков, особенно в областях со сложной хирургической анатомией, помимо технических трудностей и продолжительности оперативного вмешательства, также сопряжены с анестезиологическим риском, обусловленным проведением наркоза. При традиционном удалении инородных тел мягких тканей процент неудачных операций колеблется от 50 до 80% [5].

В последние годы появились данные об удалении инородных тел мягких тканей после ООР с применением интраоперационного рентгенологического контроля [6]. Вместе с тем высокая лучевая нагрузка на пациента и медицинский персонал, а также отсутствие верификации рентгенонегативных анатомических структур (сосуды, нервы, сухожильный аппарат и прочее) в ходе операции существенно сдерживают применение этого метода в повседневной хирургической практике. Также имеются отдельные публикации об успешном удалении инородных тел мягких тканей (в том числе не выявляемых рентгенологически) под контролем интраоперационного ультразвукового (УЗ) сканирования [7, 8]. Однако на текущий момент полностью отсутствуют сведения о возможностях удаления инородных тел мягких тканей, локализованных в областях со сложной хирургической анатомией, после огнестрельных осколочных повреждений с применением непрерывного интраоперационного ультразвукового контроля (ИУЗК). Учитывая потенциальные возможности современных методов УЗ-визуализации сложных анатомических структур при различной патологии мягких тканей, применение данной технологии на этапе оказания специализированной хирургической помощи пострадавшим со слепыми ООР может способствовать существенному улучшению результатов лечения этой категории пациентов.

Цель исследования: оценить эффективность применения ИУЗК при удалении инородных тел мягких тканей, локализованных в областях со сложной хирургической анатомией, после огнестрельных осколочных ранений.

МАТЕРИАЛ И МЕТОДЫ

С июня 2023 года по настоящее время хирургическая служба ГБУ РО «Центральная городская больница им. Н.А. Семашко» города Ростова-на-Дону работает в режиме госпиталя по оказанию специализированной помощи военнослужащим, получившим ООР в ходе специальной военной операции. За этот период в лечебном учреждении находились 1658 пострадавших с ООР мягких тканей различной локализации, что составило 81,3% к общему числу поступивших раненых.

Как правило, пациенты поступали в течение первых 3 суток после получения ранения. На момент госпитализации пациентам выполняли полипозиционную рентгенографию и УЗ-сканирование с цветным допплеровским картированием области ранения. Все инородные тела визуализировались как металлические осколки от разорвавшихся снарядов.

У 74 пострадавших (4,5%) с огнестрельными ранениями мягких тканей по данным У3-сканирования металлические осколки локализовались в труднодоступных областях, с достаточно сложной хирургической анатомией, что создавало реальные технические затруднения в случае необходимости их удаления с использованием традиционного оперативного доступа. Так, у 47 пациентов инородное тело находилось глубоко в мягких тканях в непосредственной близости от крупных сосудов: у 11 - в области бедренных сосудов (у 8 — в зоне гунтерового канала и у 3 — в паховой области), у 9 — в области сосудов плеча (у 5 — плечевой артерии в верхней и средней трети плеча, у 4 - в зоне плечевых вен в верхней трети плеча), у 8 - вобласти магистральных сосудов шеи (общая сонная артерия, внутренняя ярёмная вена), у 5 — в области подколенной артерии, у 3 — подмышечных сосудов, у 3 — в области бифуркации плечевой артерии (в зоне локтевой ямки), у 3 — лучевой артерии (в средней и верхней трети предплечья), у 3 — заднебольшеберцовой артерии (в средней и нижней трети голени) и у 1 пациента — поясничной артерии (в области её отхождения от аорты на уровне поясничного позвонка L2). У 1 пациента осколок предлежал к лицевой артерии в области выводного протока поднижнечелюстной слюнной железы.

У 17 пациентов инородное тело находилось вблизи крупных нервных стволов (у 6 — в проекции срединного нерва в средней трети предплечья, у 5 — в зоне глубокого малоберцового нерва в верхней трети голени, у 3 — в области седалищного нерва в верхней трети бедра, у 3 — в зоне бедренного нерва в паховой области).

У 10 пациентов осколки локализовались в области сухожильно-связочного аппарата конечностей (у 8 пациентов в области кисти (у 3 — во влагалище локтевой синовиальной сумки, у 5 — в срединном ладонном пространстве в толще длинных сухожилий сгибателей пальцев), у 2 — в толще ахиллова сухожилия в зоне слияния икроножного и камбаловидного апоневроза).

У 40 пациентов имел место одиночный осколок в мягких тканях, у 22 определялось до 2–3 осколков в пределах одной анатомической области и у 12 пациентов выявлялись множественные остаточные инородные тела (более 10 осколков), в том числе в нескольких анатомических областях. Размеры инородных тел варьировали от 0,2 до 2,5 см.

Основным показанием к удалению инородных тел мягких тканей являлась локализация осколка в непосредственной близости от важных анатомических образований — крупных сосудов и нервных стволов, сухожильно-связочного аппарата конечностей, что создавало реальную угрозу их повреждения с развитием тяжёлых осложнений в виде кровотечения, неврологических расстройств и нарушения активных двигательных движений конечностей.

В зависимости от способа удаления инородных тел все пациенты были разделены на две группы. В 1-ю группу (группа сравнения) были включены 26 пациентов, у которых инородные тела удаляли тра-

диционным хирургическим способом. Из их числа у 5 пациентов в связи с затруднением поиска инородного тела в мягких тканях в ходе выполнения традиционного оперативного вмешательства с целью визуализации осколка дополнительно применяли С-дугу (операционная рентгеноскопическая система ZIEHM 8000). Учитывая небольшое число клинических наблюдений дополнительного применения С-дуги при удалении инородных тел мягких тканей в ходе выполнения операции традиционным способом, настоящее исследование не предполагало выделения отдельной группы для данных пациентов. Во 2-ю (основную) группу вошли 48 пациентов, у которых инородные тела удаляли из мягких тканей в условиях применения постоянной интраоперационной УЗ-визуализации. Оперативное вмешательство осуществляли при помощи УЗ-диагностической медицинской системы «РуСкан 70П». При этом использовали линейный высокочастотный датчик L12-3E и конвексный низкочастотный датчик С5-2. Проведён сравнительный клинический анализ результатов лечения пациентов в исследуемых груп-

При статистической обработке данные проверяли на соответствие нормальному распределению на основе критерия Колмогорова—Смирнова. Определяли медиану (Me), 1-й (Q_1) и 3-й (Q_3) квартили. Для оценки различий между двумя выборками применяли критерий Манна—Уитни. Статистически значимыми считали результаты при значениях p меньше 0,05.

РЕЗУЛЬТАТЫ

В 1-й группе традиционное оперативное вмешательство выполняли у 10 пациентов (38,5%) под общим обезболиванием, у 9 (34,6%) — под проводниковой анестезией и у 7 (26,9%) — под эпидуральной аналгезией. В оперативном вмешательстве принимали участие не менее двух хирургов. Для удаления инородных тел из мягких тканей выполняли разрезы длиной от 10 до 23 см Me=18 (14; 21). Продолжительность оперативного вмешательства варьировала от 40 до 280 минут (Me=150 мин); (90; 210).

В 1-й группе у 5 пациентов (19,2%) операция оказалась безуспешной: инородные тела не удалось визуализировать и удалить. Хирургическое вмешательство завершали ушиванием и дренированием операционной раны. У 4 пациентов (15,4%) при удалении инородных тел из мягких тканей конечностей в условиях дополнительного применения рентгеноскопического контроля отмечались серьёзные интраоперационные осложнения: у 2 пациентов был повреждён глубокий малоберцовый нерв, у 1 — срединный нерв на предплечье, у 1 пациента имело место пересечение сухожилия глубокого сгибателя II пальца кисти.

В 1-й группе у 5 пациентов (19,2%) развились послеоперационные раневые инфекционно-воспалительные осложнения, которые потребовали дополнительного длительного лечения. При этом у 1 пациента с неудалённым инородным телом кисти образовался пролежень с аррозией стенки ветви глубокой артериальной ладонной дуги и формированием ложной аневризмы. У этого пациента отмечалось несколько рецидивных кровотечений по ходу раневого канала, что потребовало выполнения повторного хирургического вмешательства. В 1-й группе сроки пребывания пациентов в стационаре колебались от 7 до 22 суток (Ме=10 (7; 18) суток).

Во 2-й группе у всех пациентов оперативное вмешательство осуществляли под местной инфильтрационной анестезией в условиях постоянного ИУЗК. При этом в операции участвовал только один хирург вместе с операционной сестрой. В качестве основных хирургических инструментов при удалении инородных тел использовали прямой зубчатый зажим Бильрота и стандартный зажим типа «москит».

В ходе выполнения оперативного вмешательства с применением ИУЗК во всех случаях учитывали индивидуальные особенности сложной топографии инородных тел по отношению к близлежащим анатомическим структурам, а также принимали во внимание отсутствие прямолинейного раневого канала и возможность частичного смещения осколка по отноше-

нию к тканям при проведении инфильтрационной анестезии. Особое внимание уделяли пациентам с инородными телами, расположенными в непосредственной близости от магистральных сосудов и крупных нервных стволов, оценивали возможный риск их повреждения в ходе проведения хирургической экстракции осколков.

В качестве демонстрации возможностей применения ИУЗК при удалении инородных тел мягких тканей, локализованных в областях со сложной хирургической анатомией, приводим клинические примеры, иллюстрирующие специфику диагностики и отдельные этапы экстракции осколков, расположенных в непосредственной близости от магистральных сосудов шеи, верхних и нижних конечностей (рис. 1–8).

Рис. 1. Рентгенограмма пациента М. с огнестрельным осколочным ранением мягких тканей шеи. A — прямая проекция; B — боковая проекция с рентгенотопографической меткой (обозначена стрелкой). Инородное тело, расположенное в области общей сонной артерии (обозначено стрелкой) Fig. 1. Radiograph of patient M. with a gunshot shrapnel wound to the

soft tissues of the neck. A — direct projection; B — lateral projection with an X-ray topographic marker (indicated by arrow). Foreign body located in the area of the common carotid artery (indicated by arrow)

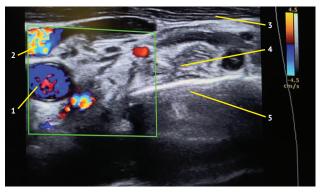
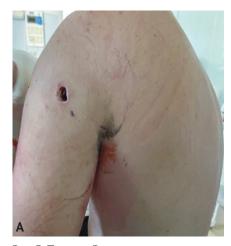



Рис. 2. Ультразвуковая сканограмма мягких тканей шеи в режиме цветного допплеровского картирования пациента М. с огнестрельным осколочным ранением шеи. Инородное тело, расположенное в области общей сонной артерии. Стрелками обозначены: 1 — общая сонная артерия; 2 — внутренняя яремная вена; 3 — грудиноключично-сосцевидная мышца; 4 — лестничные мышцы; 5 — инородное тело

Fig. 2. Ultrasound scan of soft tissues of the neck in color Doppler mapping mode of patient M. with a gunshot shrapnel wound to the neck. Foreign body located in the area of the common carotid artery. Arrows indicate: 1- common carotid artery; 2- internal jugular vein; 3- sternocleidomastoid muscle; 4- scalene muscles; 5- foreign body

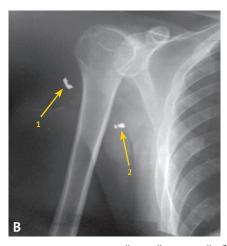
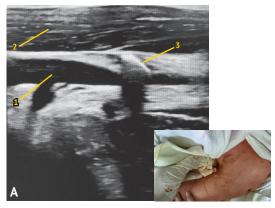



Рис. 3. Пациент Р. с огнестрельным осколочным ранением мягких тканей левой плечевой области. A — входное отверстие огнестрельной раны; B — рентгенограмма левой плечевой области (прямая проекция). Инородные тела, расположенные в мягких тканях, обозначены стрелками: 1 — в дельтовидной мышце; 2 — в области плечевой вены Fig. 3. Patient R. with a gunshot shrapnel wound to the soft tissues of the left shoulder region. A — entrance hole of the gunshot wound; B — radiograph of the left shoulder region (direct projection). Foreign bodies located in soft tissues are indicated by arrows: 1 — in the deltoid muscle; 2 — in the region of the brachial vein

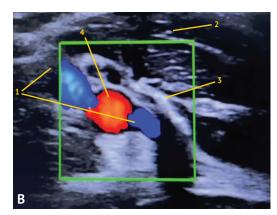


Рис. 4. Ультразвуковая сканограмма мягких тканей левого плеча пациента P. c огнестрельным осколочным ранением. A — продольное сканирование в B-режиме; B — поперечное сканирование в режиме цветного допплеровского картирования. Инородное тело, расположенное в области плечевой вены. Стрелками обозначены: 1 — плечевая вена; 2 — двуглавая мышца плеча; 3 — инородное тело; 4 — плечевая артерия

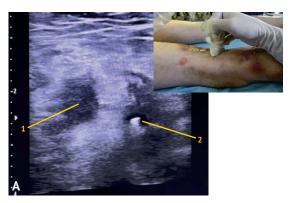

Fig. 4. Ultrasound scan of soft tissues of the left shoulder of patient R. with a gunshot shrapnel wound. A – longitudinal scanning in B-mode; B – transverse scanning in color Doppler mapping mode. Foreign body located in the area of the brachial vein. Arrows indicate: 1 – brachial vein; 2 – biceps brachii; 3 – foreign body; 4 – brachial artery

Рис. 5. Рентгенограмма пациента К. с огнестрельным осколочным ранением мягких тканей левой подколенной области. A — прямая проекция; B — боковая проекция. Инородное тело, расположенное в области подколенной артерии (обозначено стрелкой)

Fig. 5. Radiograph of patient K. with a gunshot shrapnel wound to the soft tissues of the left popliteal region. A — direct projection; B — lateral projection. Foreign body located in the region of the popliteal artery (indicated by arrow)

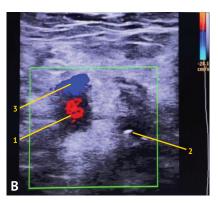


Рис. 6. Ультразвуковая сканограмма мягких тканей левой подколенной области пациента К. с огнестрельным осколочным ранением. A — продольное сканирование в B-режиме; B — поперечное сканирование в режиме цветного допплеровского картирования. Инородное тело, расположенное в области подколенной артерии. Стрелками обозначены: 1 — подколенная артерия; 2 — инородное тело; 3 — подколенная вена

Fig. 6. Ultrasound scan of soft tissues of the left popliteal region of patient K. with a gunshot shrapnel wound. A — longitudinal scanning in B-mode; B — transverse scanning in color Doppler mapping mode. Foreign body located in the area of the popliteal artery. Arrows indicate: 1 — popliteal artery; 2 — foreign body; 3 — popliteal vein

332

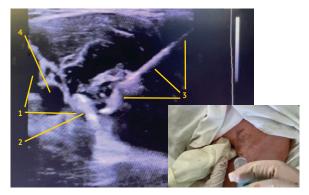


Рис. 7. Ультразвуковая сканограмма мягких тканей левой подколенной области (A) и левого плеча (B) пациентов с огнестрельными осколочными ранениями на этапе выполнения местной инфильтрационной анестезии при хирургической экстракции инородных тел, расположенных в области магистральных сосудов. Стрелками обозначены: A: 1 — подколенная артерия (частично); 2 — инородное тело; 3 — инъекционная игла. B: 1 — плечевые вены; 2 — инородное тело; 3 — инъекционная игла; 4 — плечевая артерия

Fig. 7. Ultrasound scan of soft tissues of the left popliteal region (A) and left shoulder (B) of patients with gunshot shrapnel wounds at the stage of local infiltration anesthesia during surgical extraction of foreign bodies located in the area of the main vessels. The arrows indicate: A: 1 — popliteal artery (partially); 2 — foreign body; 3 — injection needle. B: 1 — brachial veins; 2 — foreign body; 3 — injection needle; 4 — brachial artery

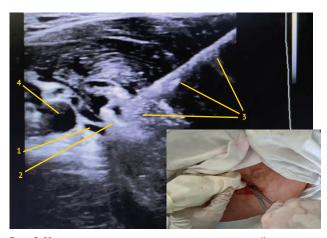
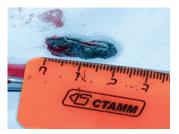


Рис. 8. Ультразвуковая сканограмма мягких тканей левого плеча пациента Р. с огнестрельным осколочным ранением на этапе удаления инородного тела, расположенного в области плечевой вены. Стрелками обозначены: 1- плечевая вена; 2- инородное тело; 3- бранши зажима; 4- плечевая артерия

Fig. 8. Ultrasound scan of soft tissues of the left shoulder of patient R. with a gunshot shrapnel wound at the stage of removing the foreign body located in the area of the brachial vein. Arrows indicate: 1 — brachial vein; 2 — foreign body; 3 — clamp branches; 4 — brachial artery


После УЗ-визуализации инородного тела в мягких тканях его удаляли двумя способами: через раневой канал с последующим выполнением хирургической обработки раны или через отдельный минимальный разрез прямо над осколком, так как последний находился на достаточно большом расстоянии от места своего входа на кожном покрове. При этом размеры операционного доступа, как правило, были сопоставимы с диаметром извлекаемого инородного тела и варьировали от 0,5 до 2,5 см (*Me*=1,5 (0,9; 2,1) см) (рис. 9). Продолжительность оперативного вмещательства колебалась от 3 до 35 минут (*Me*=18 (11; 24) минут).

Во 2-й группе больных в послеоперационном периоде раневых инфекционных осложнений не наблюдалось. Все пациенты были выписаны в удовлетворительном состоянии на 3-и-5-e сутки после операции (Me=4 (3; 5) сутки).

ОБСУЖДЕНИЕ

Представленные данные в значительной мере отражают отчётливую эволюцию подхода хирургов к выбору оптимального способа удаления инородных тел из мягких тканей у пациентов с ООР. Особенно наглядно указанная тенденция выявляется при сравнительном анализе результатов лечения пациентов с инородными телами мягких тканей, локализованных в областях со сложной хирургической анатомией, при использовании различных способов удаления осколков.

Применение традиционной хирургической техники без какой-либо лучевой интраоперационной визуализации инородного тела значительно затрудняло его поиск в мягких тканях, более чем в трети случаев приводило к отказу от проведения операции под местной анестезией в заставляло прибегать к комбинированному наркозу, неизбежно сопровождалось увеличением размеров и степени травматичности операционного



Рис. 9. Вверху: удаленные инородные тела, располагавшиеся в области общей сонной артерии (A), плечевой вены (B) и подколенной артерии (C). Внизу: соответствующие хирургические доступы, использованные при удалении этих инородных тел в условиях применения интраоперационного ультразвукового контроля

Fig. 9. Top: Removed foreign bodies located in the area of the common carotid artery (Å), brachial vein (B), and popliteal artery (C). Bottom: The corresponding surgical approaches used to remove these foreign bodies under intraoperative ultrasound navigation

доступа, а также существенно увеличивало продолжительность времени вмешательства. При этом в 19,2% случаев не удавалось визуализировать и удалить инородное тело из мягких тканей, несмотря на значительное расширение операционного доступа.

Дополнительное применение рентгеноскопического контроля с использованием С-дуги в ходе традиционного хирургического вмешательства позволило в определённой мере улучшить технические условия его выполнения за счёт интраоперационной визуализации инородного тела в мягких тканях. Вместе с тем этот метод не позволял визуализировать рентгенонегативные важные анатомические структуры, такие как крупные сосуды, нервные стволы и сухожилия, что создавало реальный риск их повреждения при выполнении закрытых хирургических манипуляций в ране в ходе проведения операции. Так, у пациентов 1-й группы при удалении инородных тел мягких тканей с дополнительным применением С-дуги в 4 случаях отмечено повреждение крупных нервов и сухожилия в области верхних и нижних конечностей. Кроме того, при проведении хирургического вмешательства под постоянным рентгеноскопическим контролем возникала дополнительная лучевая нагрузка на пациента и медицинский персонал.

Высокая травматичность и продолжительность оперативного вмешательства у пациентов 1-й группы в значительной мере предопределили развитие у них достаточно большого числа послеоперационных раневых инфекционных осложнений, что сопровождалось увеличением срока пребывания их в стационаре.

Анализ применения ИУЗК при удалении инородных тел мягких тканей выявил значительные преимущества этого метода по сравнению со стандартными способами, особенно в случаях локализации осколков в непосредственной близости от крупных сосудов, нервных стволов и сухожильно-связочного аппарата. Так, применение интраоперационного УЗ-сканирования в непрерывном режиме при удалении инородного тела в отличие от выполнения этой хирургической

процедуры с использованием С-дуги, помимо отсутствия лучевой нагрузки, позволяло точно определить локализацию осколка в мягких тканях и оценить его взаимоотношения с окружающими анатомическими структурами, включая сосуды, нервные стволы и сухожилия. Это позволяло определить наиболее оптимальный операционный доступ для удаления инородного тела, полностью визуально контролировать выполнение всех закрытых манипуляций хирургическими инструментами в ране, что практически исключало риск повреждения анатомически важных структур. При этом во всех случаях удаётся выполнить оперативное вмешательство под местным обезболиванием и максимально минимизировать операционную травму за счёт уменьшения хирургического доступа и значительного сокращения времени проведения операции. Всё это позволило у пациентов 2-й группы добиться желаемого хирургического результата (удаления инородного тела), избежать развития послеоперационных раневых инфекционных осложнений и сократить сроки пребывания их в стационаре в 2,5 раза по сравнению с пациентами 1-й группы.

ЗАКЛЮЧЕНИЕ

Проведённый нами клинический анализ выявил очевидные преимущества применения интраоперационного ультразвукового контроля при удалении инородных тел мягких тканей у пациентов с огнестрельными осколочными ранениями по сравнению с традиционным хирургическим вмешательством, включая гибридный вариант выполнения оперативного пособия с использованием С-дуги. В наибольшей мере преимущества интраоперационного ультразвукового сканирования выявляются при удалении инородных тел мягких тканей, расположенных вблизи магистральных сосудов, крупных нервных стволов, а также сухожильно-связочных структур конечностей, которые не визуализируются в условиях применения рентгеноскопического контроля, что создаёт реальный риск их повреждения при выполнении закрытых хирургических манипуляций. К числу основных преимуществ применения интраоперационного ультразвукового контроля при удалении инородных тел мягких тканей по сравнению с традиционным хирургическим вмешательством следует отнести следующие:

- 1) чёткая визуализация инородного тела относительно рентгенонегативных анатомических структур (сосудов, нервных стволов, сухожильно-связочного аппарата), что позволяет в полном объёме контролировать проведение всех закрытых хирургических манипуляций в ране и гарантирует их безопасность;
- 2) возможность выполнения оперативного вмешательства под местной инфильтрационной анестезией;
- 3) минимизация операционной травмы за счёт значительного уменьшения размеров хирургического доступа (1,5 см против 18 см; p<0,05) и продолжительности оперативного вмешательства (18 минут против 150 минут; p<0,05).

Применение интраоперационного ультразвукового контроля при удалении инородных тел мягких тканей, локализованных в областях со сложной хирургической анатомией, после огнестрельных осколочных ранений позволило полностью избежать развития раневых инфекционных осложнений и значительно сократить сроки нахождения пациентов в стационаре по сравнению с группой больных, оперированных традиционным способом (4 суток против 10 суток; p < 0.05).

выводы

- 1. При огнестрельных осколочных ранениях мягких тканей у 4,5% пострадавших инородные тела локализуются в областях с достаточно сложной хирургической анатомией (вблизи крупных сосудов, нервных стволов, а также в толще сухожильно-связочного аппарата), что создаёт реальные технические затруднения в случае их удаления традиционным хирургическим способом. По данным ультразвукового сканирования подобная «опасная» локализация инородных тел чаще всего выявляется в области важных анатомических структур верхних и нижних конечностей, а также шеи.
- 2. Применение традиционного хирургического способа удаления инородного тела, локализованного в «опасной» анатомической зоне, значительно затрудняет его поиск в мягких тканях, сопровождается увеличением размеров и степени травматичности операционного доступа, а также существенно увеличивает продолжительность оперативного вмешательства. При

ного рентгеноскопического контроля в ходе проведения традиционного операционного вмешательства не позволяет визуализировать находящиеся вблизи инородного тела анатомически важные рентгенонегативные структуры (сосуды, нервные стволы, сухожилия), что значительно повышает риск их повреждения при

удалении осколка из мягких тканей.

этом в 19,2% случаев оперативное вмешательство

оказывается безуспешным в связи с невозможностью визуализации и удаления инородного тела из мягких

тканей, несмотря на значительное расширение опера-

3. Дополнительное применение интраоперацион-

ционного доступа.

- 4. Интраоперационное ультразвуковое сканирование позволяет точно визуализировать инородное тело в мягких тканях и близлежащие анатомические структуры (сосуды, нервы, сухожилия), а также рабочие инструменты хирурга в ходе проведения оперативного вмешательства, что гарантированно обеспечивает безопасность выполнения всех закрытых хирургических манипуляций в ране при экстракции осколка.
- 5. Применение интраоперационного ультразвукового контроля при удалении инородных тел мягких тканей позволяет значительно повысить эффективность хирургического лечения пациентов с огнестрельными осколочными ранениями по сравнению с традиционным оперативным вмешательством. Положительный результат хирургического лечения в этом случае достигается, прежде всего, за счёт постоянной и чёткой ультразвуковой визуализации всех этапов удаления инородного тела из мягких тканей, оптимизации хирургического доступа и оперативного приёма. Это значительно уменьшает степень травматизма оперативного вмешательства вследствие существенного уменьшения размеров хирургического доступа (Me=1,5 (0,9; 2,1) см против Me=18(14; 21) см; p<0,05) и продолжительности выполнения операции (Ме=18 (11; 24) минут против Me=150 (90; 210) минут; p<0.05).
- 6. Применение интраоперационного ультразвукового контроля при удалении инородных тел мягких тканей по сравнению с традиционным хирургическим вмешательством позволяет избежать развития послеоперационных раневых инфекционных осложнений, что существенно сокращает сроки госпитализации пациентов с огнестрельными осколочными ранениями (Me=4 (3; 5) суток против Me=10 (7; 18) суток; p<0,05) и способствует их более быстрой реабилитации.

список источников

- Момот Н.В., Плахотников И.А., Малинин Ю.Ю., Макарчук О.В., Швадченко Ю.Ю., Шапаренко Э.В. и др. Анализ результатов хирургического лечения пациентов с огнестрельно-осколочными ранениями мягких тканей во время боевых действий в Донецкой Народной Республике. Медико-социальные проблемы семьи. 2017;22(2):80–84.
- 2. Министерство обороны Российской Федерации. Главное военномедицинское управление. Методические рекомендации по лечению боевой хирургической травмы. Москва; 2022. URL: https://vmeda.mil.ru/upload/site56/document_file/3w7uzoaLyP.pdf [Дата обращения 26 мая 2025 г.]
- Солосин В.В., Кузьмин С.А., Вяльцин С.В., Григорьева Л.К. Организация оказания первой помощи раненым военнослужащим в зоне вооруженного конфликта. Медицина катастроф. 2023;(3):53–56. https://doi.org/10.33266/2070-1004-2023-3-53-56
- 4. Зубов А.Д., Сенченко О.В., Черняева Ю.В., Ультразвуковая визуализация инородных тел мягких тканей. *Медицинская визуализация*. 2016;(6):125–132.
- 5. Зубов А.Д., Шаталов А.Д., Вегнер Д.В., Ступаченко Д.О., Сидоренко Ю.А. Ультразвуковая диагностика инородных тел у пострадавших с сочетанной травмой груди и живота. Вестник неотложной и восстановительной хирургии. 2021;6(2):73–83.

- Момот Н.В., Плахотников И.А., Малинин Ю.Ю., Макарчук О.В., Швадченко Ю.Ю., Шапаренко Э.В. и др. Анализ результатов хирургического лечения пострадавших с огнестрельно-осколочными ранениями мягких тканей с применением интраоперационного мультиплоскостного рентгенологического контроля. Анналы хирургии. 2017;22(4):217–221. https://doi.org/10.18821/1560-9502-2017-22-4-217-221
- Дадаян А.Р., Белик Б.М., Тенчурин Р.Ш., Болоцков А.С. Опыт удаления глубокорасположенного инородного тела мягких тканей шеи под ультразвуковым контролем у пациента после осколочного ранения. Вестник экспериментальной и клинической хирургии. 2024;17(2):66-71. https://doi.org/10.18499/2070-478X-2024-17-2-66-71
- Дадаян А.Р., Протопопова Л.В. Оценка эффективности интраоперационного ультразвукового контроля при удалении инородных тел из мягких тканей у военнослужащих с осколочными ранениями на этапе специализированной хирургической помощи. Известия Российской военно-медицинской академии. 2024;43(2):125–131. https://doi.org/10.17816/rmmar623074

REFERENCES

- Momot NV, Plakhotnikov IA, Malinin YuYu, Makarchuk OV, Shvadchenko YuYu, Shaparenko EV, et al. Analysis of the results of surgical treatment of patients with gunshot fragmentation wounds of soft tissues using intraoperative multiplane X-ray control. *Annals of Surgery, Russian journal*. 2017; 22 (4): 217–221. (In Russ.). http://dx.doi. org/10.18821/1560-9502-2017-22-4-217-221
- Ministerstvo oborony Rossiyskoy Federatsii. Glavnoe voennomeditsinskoe upravlenie. Metodicheskie rekomendatsii po lecheniyu boevoy khirurgicheskoy travmy. Moscow; 2022. (In Russ.) Available at: https://vmeda.mil.ru/upload/site56/document_file/3w7uzoaLyP.pdf [Accessed May 26, 2025]
- Solosin VV, Kuzmin SA, Vyaltsin SV, Grigor'eva LK. Organization of First Aid to Wounded Servicemen in the Zone of Armed Conflict. *Disaster Medicine*. 2023;3:53–56 (In Russ.). https://doi.org/10.33266/2070-1004-2023-3-53-56
- Zubov AD, Senchenko OV, Chernyaeva YuV. Ultrasound Imaging of Soft Tissue Foreign Bodies. Medical Visualization. 2016;(6):125–132. (In Russ)
- 5. Zubov AD, Shatalov AD, Vegner DV, Stupachenko DO, Sidorenko YA. Ultrasound Diagnosis of Foreign Objects in Injured Patients

- With Combined Thorax/ Abdomen Traumas. Vestnik neotlozhnoy i vosstanovitel'noy khirurgii. 2021;6(2):73–83. (In Russ.)
- Momot NV, Plakhotnikov IA, Malinin YuYu, Makarchuk OV, Shvadchenko YuYu, Shaparenko EV, et al. Analysis of the results of surgical treatment of patients with gunshot fragmentation wounds of soft tissues using intraoperative multiplane X-ray control. *Annals of Surgery, Russian journal*. 2017; 22(4): 217–221 (In Russ.). http://dx.doi. org/10.18821/1560-9502-2017-22-4-217-221
- Dadayan AR, Belik BM, Tenchurin RS, Bolotskov AS. Ultrasound-Guided Removal of Deep-Lying Foreign Bodies of the Soft Neck Tissue in a Patient with a Shrapnel Wound. *Journal of Experimental and Clinical Surgery*. 2024;17(2):66–71. (In Russ.) https://doi.org/10.18499/2070-478X-2024-17-2-66-71
- Dadayan AR, Protopopova LV. The Effectiveness of Intraoperative Ultrasound Control in Removing Foreign Bodies of Soft Tissues in Military Personnel With Fragmentation Wounds at the Stage of Specialized Surgical Care. *Izvestia of the Russian Military Medical* Academy. 2024;43(2):125–131. (In Russ.) https://doi.org/10.17816/ rmmar623074

ИНФОРМАЦИЯ ОБ АВТОРАХ

Белик Борис Михайлович доцент, доктор медицинских наук, заведующий кафедрой общей хирургии ФГБОУ ВО РостГМУ

М3 РФ:

https://orcid.org/0000-0003-0813-193X, bbelik@yandex.ru;

50%: дизайн исследования, организация и проведение исследования, общее руководство,

написание и редактирование статьи, окончательное утверждение рукописи

Дадаян Арсен Рудольфович врач хирургического отделения № 2 ГБУ РО «ЦГБ им. Н.А. Семашко»;

https://orcid.org/0000-0002-1766-305X, ara130885@mail.ru;

40%: оперативные вмешательства в клинике, сбор и обработка данных, анализ и интерпретация

результатов, написание статьи

Тенчурин Ринат Шамильевич кандидат медицинских наук, доцент кафедры общей хирургии ФГБОУ ВО РостГМУ МЗ РФ;

заведующий хирургическим отделением № 2 ГБУ РО «ЦГБ им. Н.А. Семашко»;

https://orcid.org/0000-0003-0496-3907, tenchurin@gmail.com;

10%: оперативные вмешательства в клинике, сбор и обработка данных, интерпретация

результатов

Авторы заявляют об отсутствии конфликта интересов

The Effectiveness of Intraoperative Ultrasound Navigation in the Removal of Soft Tissue Foreign Bodies Localized in Areas with Complex Surgical Anatomy After Gunshot Shrapnel Wounds

B.M. Belik^{1,2 \boxtimes}, A.R. Dadayan¹, R.Sh. Tenchurin^{1,2}

Department of General Surgery

¹ Rostov State Medical University

Nachitsevanskij lane 29, Rostov-on-Don, Russian Federation 344022

² N.A. Semashko Central City Hospital

Voroshilovsky Ave. 105, Rostov-on-Don, Russian Federation 344010

🖂 Contacts: Boris M. Belik, Doctor of Medical Sciences, Head, Department of General Surgery, Rostov State Medical University. Email: bbelik@yandex.ru

RELEVANCE The greatest technical difficulties in the surgical removal of foreign bodies after gunshot shrapnel wounds (GSW) of soft tissues arise when fragments are deeply located near large vessels, nerve trunks, and in the area of the tendon-ligamentous apparatus of the extremities. At the moment, there is practically no information about the possibilities of removing soft tissue fragments localized in areas with complex surgical anatomy using intraoperative ultrasound navigation (IUN).

AIM OF THE STUDY To evaluate the effectiveness of the use of IUN in the removal of soft tissue foreign bodies localized in areas with complex surgical anatomy after GSW.

MATERIAL AND METHODS A comparative analysis of the outcomes of surgical treatment of 74 patients with GSW of soft tissues, in whom foreign bodies were localized in hard-to-reach anatomical zones near large vessels, nerve trunks, as well as in the thickness of the tendon-ligamentous apparatus of the extremities, was carried out. In 26 patients (group 1), foreign bodies were removed by a conventional surgical method. In 5 patients, a C-Arm X-ray machine was additionally used during the conventional procedure. In 48 patients (group 2), foreign bodies were removed using IUN.

RESULTS In 19.2% of group 1 patients, during the conventional surgical intervention, it was not possible to visualize and remove the foreign body. When removing soft tissue foreign bodies under conditions of additional use of X-ray scanning, we noted damage to large nerve trunks in 3 cases, and the intersection of tendons in various limb segments in 1 case. In 38.5% of patients, the operation was performed under anesthesia. The average length of the incision to remove the fragment was 18 cm (14; 21). The average duration of surgery was 150 minutes (90; 210). In group 1, 5 (19.2%) patients developed postoperative wound infectious complications. The average length of hospital stay was 10 days (7; 18). In patients of group 2, the use of IUN made it possible to clearly visualize the foreign body in soft tissues and nearby anatomically important structures, which ensured the safe performance of closed surgical manipulations in the wound during fragment extraction. In those patients, the operation was performed under local anesthesia. A positive result of the intervention (removal of the foreign body) was achieved

in all the cases. The average length of the surgical incision was 1.5 cm (0.9; 2.1). The average duration of the intervention is 18 minutes (11; 24). In the 2-nd group of patients, there were no wound infectious complications in the postoperative period. The average length of hospital stay was 4 days (3; 5).

CONCLUSION The use of IUN in the removal of soft tissue foreign bodies localized in hard-to-reach and "dangerous" anatomical areas can significantly increase the effectiveness of surgical treatment of patients with GSW due to clear visualization of all stages of fragment extraction, optimization of surgical access and surgical technique, which significantly reduces the degree of surgical trauma and shortens the duration of surgery.

Keywords: gunshot shrapnel wounds, removal of soft tissue foreign bodies, complex surgical anatomy, intraoperative ultrasound control

For citation Belik BM, Dadayan AR, Tenchurin RSh. The Effectiveness of Intraoperative Ultrasound Navigation in the Removal of Soft Tissue Foreign Bodies Localized in Areas with Complex Surgical Anatomy After Gunshot Shrapnel Wounds. *Russian Sklifosovsky Journal of Emergency Medical Care.* 2025;14(2):328–337. https://doi.org/10.23934/2223-9022-2025-14-2-328-337 (in Russ.)

Conflict of interest Authors declare lack of the conflicts of interests Acknowledgments, sponsorship The study has no sponsorship

Affiliations

Boris M. Belik Doctor of Medical Sciences, Associate Professor, Head, Department of General Surgery, Rostov State Medical University;

https://orcid.org/0000-0003-0813-193X, bbelik@yandex.ru;

50%, study design, organization and conduct of the study, general management, writing and editing the article, final

approval of the manuscript

Arsen R. Dadayan Surgeon, Surgical Department No. 2, N.A. Semashko Central City Hospital;

https://orcid.org/0000-0002-1766-305X, ara130885@mail.ru;

40%, surgical interventions in the Clinic, data collection and processing, analysis and interpretation of results, article

writing

Rinat Sh. Tenchurin Candidate of Medical Sciences, Associate Professor, Department of General Surgery, Rostov State Medical University; Head,

Surgical Department No. 2, N.A. Semashko Central City Hospital; https://orcid.org/0000-0003-0496-3907, tenchurin@gmail.com;

10%, surgical interventions in the Clinic, data collection and processing, interpretation of results

Received on 30.08.2024 Review completed on 14.10.2024 Accepted on 24.03.2025 Поступила в редакцию 30.08.2024 Рецензирование завершено 14.10.2024 Принята к печати 24.03.2025