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ABSTRACT The leading positions in terms of frequency, severity of the course and high mortality belong to infectious forms of acute pancreatitis. 
However, not all pathophysiological mechanisms of the development of this disorder have been studied. Given that immune responses are an integral 
part of the pathogenesis of pancreatitis, it is extremely important to study the relationship between the mechanisms of inflammation and activation 
of the immune response. This review will discuss the role of various populations of innate immune cells, including macrophages, neutrophils, 
dendritic and mast cells, and regulatory immune cells in the pathogenesis of gland tissue destruction and the relationship between immune responses 
and systemic inflammatory response syndrome. Targeting innate immune cell populations and metabolite signaling pathways in acute pancreatitis 
may lead to a broader and ultimately more effective redirection of the treatment program towards disease resolution and improved clinical outcomes. 
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AP – acute pancreatitis 
APC – antigen presenting cells 
DC – dendritic cells 
DNA – deoxyribonucleic acid 
IL – interleukin 
MCP - 1–chemotactic protein of monocytes-1 
MDSC – myeloid-derived suppressor cells 
MAP – mild acute pancreatitis 
MPO – myeloperoxidase 
MF – macrophages 
NF – neutrophils 
NK cells – natural killer cells 
SIR – systemic inflammatory response 
SAP – severe acute pancreatitis 
Treg cells – regulatory T cells 

The treatment of purulent-inflammatory diseases and complications remains one of the most difficult 
problems of surgery, despite significant advances in understanding their pathogenesis and advances in 
antimicrobial therapy. One of the first places is occupied by intra-abdominal infections, complicating diseases 
and injuries of the abdominal organs. The leading positions in the frequency and severity of the course are 
occupied by infected forms of pancreatitis and widespread peritonitis. Mortality in this case does not have any 
tendency to decrease and varies, according to recent years, from 19 to 60% [1]. 

The pathogenesis of these diseases is based on the inflammatory process, which is carried out and regulated 
by the immune system [2–4]. 

Numerous data show that excessive systemic inflammation associated with acute pancreatitis (AP) is a 
consequence of uncontrolled or unregulated activation of the immune system [5]. 

In the early stage of AP, damage to pancreatic acinar cells occurs in an aseptic environment, and this leads 
to the release of pro-inflammatory mediators, infiltration of immune cells, and sterile inflammation [2]. 
Therefore, pathogen-associated molecular patterns (PAMPs) do not play any role in the range and activation of 
immune cells in the early stages of AP [6]. 
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Necrotized pancreatic acinar cells release various types of damage-associated molecular patterns (DAMPs), 
including high mobility group 1 protein (HMGB 1), own DNA (deoxyribonucleic acid), and many others [7, 8]. 
As a result, the corresponding receptors of infiltrating immune cells are activated, the production of more 
inflammatory mediators increases, which, in turn, promotes greater infiltration of immune cells and 
exacerbates inflammation [9]. 

Although the pathogenesis of AP is quite complex, more and more studies show that infiltrating immune 
cells play a crucial role in its development and determine the severity of the disease [10]. The relative difficulty 
of obtaining human pancreatic tissue in pancreatitis necessitates experimental studies. Although current 
animal models do not capture all aspects of human disease and differences between experimental and clinical 
pancreatitis need to be considered, they will be used until better and more accessible models are developed [11]. 

Cells of the innate immune system, including macrophages (MF), neutrophils (NF), dendritic cells (DC), and 
labrocytes represent the majority of infiltrating cells in AP. As shown in many experimental models, within a 
few minutes after the onset of AP, MF [12], NF [13], DC [14], TK [15], natural killer cells (NK cells) [16], as well 
as adaptive immune cells such as T and B lymphocytes [17]. 

As a rule, infiltration by immune cells is a necessary protective mechanism for recovery. However, in some 
cases, pathogenic factors cannot be eliminated in a short period of time and the inflammatory response 
associated with the pro-inflammatory functions of immune cells will persist and intensify, which can further 
aggravate damage to the pancreas, provoke its necrosis and contribute to the development of systemic 
inflammation [18, 19 ]. 

However, about 80% of cases of AP are mild AP (MAP) [20] with only interstitial changes in the pancreas, 
which can usually be resolved within 2 weeks. However, patients with severe AP (SAP) rapidly develop a 
systemic inflammatory response (SIR) with multiorgan dysfunction leading to death [21]. 

It was believed that the SIR syndrome plays an important role in the progression of AP, but the specific 
relationship of SIR with pancreatic necrosis complicated by an infectious process remained largely unclear. In 
a prospective observational cohort study that included 2,130 patients with AP, the authors, using modern 
statistical methods, were able to prove that the duration of SIR is independently associated with pancreatic 
necrosis and can be used to predict persistent multiple organ failure, pancreatic infection, and mortality. These 
results were comparable or even exceeded the significance of such an indicator as the APACHE II severity index 
[22]. Thus, it is the long-term SIR syndrome that creates the prerequisites for infection of the pancreas and 
surrounding tissues. 

Using experimental models of AP, the immune mechanisms involved in its pathogenesis have been studied. 
It has been shown that the first cells rushing to the focus of inflammation are NF [23]. NFs are important effector 
cells and are known as powerful pathogen scavengers and inactivators due to the action of bactericidal 
substances found in cytoplasmic granules: myeloperoxidase (MPO), acid phosphatase, alkaline phosphatase, 
lysozyme, and defensins. 

The main function of NF was considered to be the maintenance of immune surveillance, i.e., effectively 
limiting the spread of infection by clearing pathogens and preventing the development of sepsis [24]. However, 
in recent years, more and more evidence indicates that NFs also play an important role in sterile inflammation, 
they are necessary to clear the “cellular debris” formed during tissue damage in order to restore cellular 
homeostasis [23, 25, 26]. 

The two classic functions of NF, clearance of pathogens and cell fragments by phagocytosis and 
degranulation, are not the only ones. In 2004, Brinkmann first reported that NFs can perform these functions 
by forming extracellular traps (networks) [27]. Networks are structures released by activated NF into the 
extracellular space with DNA as a scaffold, into which histones, MPO, NF elastase, cathepsin G , calreticulin, 
protease 3, HMGB 1 (a nuclear protein secreted by activated cells as a cytokine mediator and also released with 
necrosis of cells and tissues) and others. After release from cells, HMGB 1 can bind to the innate immunity 
receptor TLR 4, which leads to the secretion of MF cytokines and subsequent inflammatory response [27–30]. 
Since the formation of networks is usually accompanied by the death of NF, this process is also called netosis 
[31]. Initially, it was believed that networks are the mechanism by which NF clear tissues from pathogenic 
microorganisms, for example, Staphylococcus aureus, Salmonella, Streptococcus, Shigella flexneri, etc. [27, 32–
34]. However, studies of the last decade have convincingly shown that NFs not only have effector functions of 
the innate immune response, but are also able to modulate the adaptive immune response through direct 
interaction with cytokines or through their production and influence on DCs and lymphocytes [35]. 
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Even more importantly, the formation of networks promotes trypsinogen activation by phosphorylation of 
one of the mediator proteins that provide a cell response to signals coming through the interleukin (IL) and 
growth factor (STAT 3) receptors, which leads to block of the pancreatic ducts due to the formation of aggregates 
and even greater infiltration by NF cells [36]. In addition, during AP, damaged pancreatic acinar cells release 
various types of damage-associated molecular patterns (DAMPs), which leads to the recruitment and activation 
of NF and MF [37]. Thus, NF infiltration is a double-edged sword, since the lack of a tendency to resolve or 
persistent local inflammation can lead to a more aggressive NF response, often accompanied by overproduction 
of pro-inflammatory cytokines, destruction of normal tissues, and leads to the development of uncontrolled 
systemic inflammation [38]. 

MF play an equally important role in the pathogenesis of the inflammatory process. Like NF, MF are also the 
main innate immune cells that penetrate the pancreas at an early stage of AP and contribute to the development 
of inflammation, while trypsinogen activation under the influence of NF and MF is accompanied by necrosis 
and increased inflammation [10, 39, 40–42]. In addition, MF activation is accompanied by their pyroptosis, a 
rapid programmed cell necrosis characterized by cell swelling, membrane destruction, and the release of pro-
inflammatory cytokines such as IL- 1β, IL-18, and HMGB 1 [43, 44]. 

The functions of MF are in many respects similar to those of NF: they can clear pathogenic microorganisms, 
tissue debris, necrotic and apoptotic cells through their efficient phagocytosis, playing an important role in 
infectious and sterile inflammation [45]. They are not only an important component of innate immunity, but 
also participate in the regulation of the adaptive immune response as antigen presenting cells (APCs) [46]. 

The high plasticity is a feature of MF. MF polarization is a phenotypic and functional change in response to 
changes in the microenvironment [47, 48]. MFs typically exist in two distinct subsets, including classically 
activated (M1) and alternatively activated (M2) cells. M1 are usually polarized by Th1 cytokines IFN-γ , TNF-
α and, secreting IL-1β , IL-6, IL-12 and tumor necrosis factor (TNF-α), initiate and enhance inflammation, while 
M2 are induced by Th2 cytokines IL-4, IL-13 and play an anti-inflammatory, immunoregulatory and pro-fibrotic 
role by secreting IL-4, IL-10, IL-13 and transforming growth factor-β (TGF-β) [45-47] . 

 The disbalance of MF polarization and especially the type where M1 to M2 increases significantly, is one of 
the mechanisms underlying the exacerbation of many inflammatory diseases, including autoimmune 
myocarditis [49], ischemic brain injury [50], acute lung injury [51], AP [52], ischemic/reperfusion injury of the 
intestine [53] and others. 

MF polarization also occurs under the influence of other stimuli, for example, components of ascitic fluid that 
accumulates in the abdominal cavity during SAP. Therefore, the therapeutic effect of paracentesis drainage of 
the abdominal cavity is partially achieved by stimulating the polarization of M2 macrophages and inhibiting the 
polarization of M1, which reduces the activity of the inflammatory process and destruction of the pancreas [54]. 

A recent study showed that the inflamed pancreas releases exosomes containing various signaling 
molecules, resulting in damage to distant organs, such as the lungs, through activation of inflammation and 
subsequent pyroptosis in alveolar MFs. Inhibition of exosome release or uptake by GW 4869 or Enoxaparin 
significantly reduced alveolar MF pyroptosis and alleviated SAP-induced lung injury [55]. These studies suggest 
that targeting infiltrating MF to pyroptosis may be a novel and effective strategy for the treatment of AP. 

Other innate immune cells involved in the pathogenesis of AP are DC, which originate from bone marrow 
hematopoietic stem cells and are the most potent APCs. They can phagocytize and destroy pathogens and 
foreign antigens in the course of innate immune functions. In addition, DCs can activate T and B cells through 
antigen presentation and regulate immune responses by secreting various cytokines. Therefore, DCs are the 
link between innate and adaptive immunity [56]. 

The results of studies of AP on experimental models have shown conflicting results. Infiltrating DC in some 
cases play a protective role [14, 56, 57], while DC activity’s block limits NF infiltration and tissue damage during 
inflammation [58]. But sometimes they can aggravate the severity of AP [59, 60]. It was also shown that the 
number of DCs, represented by a phenotype secreting IL-6, monocyte chemoattractant protein-1 (MCP -1) and 
TNF-a, increased 100-fold in the pancreas of mice with SAP, induced by cerulein or L-arginine. The addition of 
the probiotic Clostridium butyricum to the therapeutic complex can alleviate tissue damage and inflammation 
by reducing DC infiltration into the tissue of the inflamed pancreas [61]. 

A recent study reported an interesting phenomenon that in AP, pancreatic acinar cells undergo an acinar 
transition to DC, which in turn promotes the differentiation of naive CD 4+ T cells into CD4+/IFN-γ+Th1 and 
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CD4+/IL-17A+Th17 cells, thereby exacerbating local inflammation and tissue damage [59]. Thus, DCs play both a 
pro- and anti-inflammatory role in AP, but its full understanding in the pathogenesis of AP requires further research. 

In AP, not only abnormal accumulation of labrocytes in the pancreatic tissue was noted, but also their activation 
and degranulation [15, 62]. In a process known as degranulation, labrocytes release cytoplasmic granules including 
histamine, serotonin, proteases, cytokines, and chemokines. The treatment with ketotifen [63], as well as 
intraperitoneal administration of other labrocytes inhibitors such as cromolyn or sodium cromoglycate, has been 
shown to significantly reduce histamine release, reduce prostate tissue damage, and reduce plasma exudation in the 
prostate, colon, and lungs, suggesting that labrocytes activation is involved in the development of endothelial 
dysfunction in the pancreas and other distant organs in AP, which can lead to multiple organ dysfunction [15, 64]. 
Given that activated infiltrating labrocytes secrete IL-33 and histamine, which cause inflammation of the pancreas 
[65], scopoletin administration reduced the severity of pancreatic injury and associated lung damage by reducing 
labrocytes activation and corresponding levels of IL-33 [66]. Thus, it has been indirectly shown that labrocytes play 
a certain role in the pathogenesis of AP and can be promising targets for its treatment. 

The understanding the role of natural killer cells (NK cells) in the pathogenesis of AP is currently limited by 
the paucity of studies. Some of them reported that NK cells penetrated into the inflamed pancreas from the 
second day, reaching a maximum on the 4th day and remaining up to 28 days, in the model of AP provoked by 
an adenovirus vector, however, their role in the pathogenesis of pancreatic inflammation is unclear [16]. 

The main function of NK cells is the destruction of tumor or virus-infected cells [67]. Apparently, this is why 
it was possible to fix the infiltration of gland tissues with NK cells on the model of pancreatitis caused by a viral 
infection. In addition, they are involved in maintaining immune homeostasis and regulating inflammation. A 
number of researchers focused on changes in NK cells in the peripheral blood and showed that their number in 
patients with AP was lower than in healthy people who made up the control group [68, 69]. 

The activity of NK cells and their antibody-dependent cell-mediated cytotoxicity were significantly reduced in 
some patients with SAP compared with MAP, while a significant decrease in the number of peripheral blood NK 
cells was maintained from an early date for 30 days. It is believed that the immunosuppressive state, accompanied 
by the depletion of peripheral leukocytes and NK cells, is responsible for the infectious complications of AP [70, 
71]. However, additional studies are needed to confirm the pathogenetic role of NK cells in AP. 

Hyperactivation of the immune system and uncontrolled inflammation are undesirable consequences of 
many pathological conditions, since they lead to tissue damage, immune depletion and increased pathological 
changes. But there are immune regulatory cells in the immune system that can limit overactivation and 
inflammation. It is currently believed that myeloid-derived suppressor cells (MDSC) can suppress specific and 
non-specific immune responses through various mechanisms. One of these mechanisms is the secretion of a 
large amount of anti-inflammatory ILs, such as IL-10 [72]. 

However, excessive activation of anti-inflammatory immune responses is associated with undesirable 
consequences in the form of septic complications. The spread of MDSC is promoted by infection with 
Staphylococcus aureus (S. aureus) as a result of inhibition of specific T -cell responses against this pathogen 
[73]. In S. aureus-infected mice, MDSC inhibited monocyte/macrophage-mediated antibacterial immunity by 
secreting IL-10, which excess concentration promotes infection persistence [74]. 

Clearly, MDSC is an important population of immunoregulatory cells that is activated mainly during 
infectious inflammation. The secretion of a large number of immunoregulatory cytokines IL-10 and TGF-β is 
considered the main mechanism by which MDSC can reduce the activity of immune responses . It is important 
to understand that IL-10 can directly inhibit immune responses by upregulating cell membrane suppressor 
molecules such as PD-1 and PD-L1 on MDSC. This, in turn, can suppress the activation of the immune response 
through direct cross-talk with neighboring immune cells at the site of inflammation. On the other hand, IL-10 
can indirectly suppress immune responses by switching inflammatory immune responses to anti-inflammatory 
ones, suppressing the maturation and activation of innate immune cells such as labrocytes, MF and NK cells, 
while simultaneously causing the expansion of regulatory T cells (Treg cells). 

Interest in the role of T cells in the regulation of the inflammatory process has recently increased greatly. 
Most of the research focuses on how mediators that promote recovery after acute inflammation affect the 
functional activity of T cells. For example, lipoxins and cellular protectin D1 of T-helper type 2 (Th2) suppress 
T-cell pro-inflammatory cytokines and infiltration into inflammatory foci [75]. 
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Conversely, the pro-inflammatory leukotriene B4 (LTB4) has been shown to dose-dependently reduce the 
differentiation of naive T cells into Treg cells, promoting the formation of Th 17 cells instead [76]. The role of 
Treg cells is very important, since they secrete IL-10 and amphiregulin, which promote tissue repair [77, 78]. 

It has been shown that both in vitro and in vivo Treg cells, producing IL-13, include the induction of IL-10 
synthesis in MF. IL-10 through the autocrine-paracrine pathway helps MF to carry out efferocytosis (uptake of 
apoptotic cells) during the inflammation resolution reaction [79, 80]. In accordance with the role of efferocytosis 
in resolving the consequences of inflammation, Treg cells can also change the MF phenotype and reprogram 
their metabolism in such a way that their anti-inflammatory and restorative functions are activated [78, 80]. 

In addition, data from an experimental model suggest that Treg cells play an important role in the clearance 
of apoptotic cells during the resolution phase of zymosan-induced peritonitis [81]. It has also been shown that, 
as in peritonitis, Treg cells contribute to efferocytosis in acute lung injury provoked by bacterial 
lipopolysaccharide, and this process is independent of B cells and effector T cells [77, 82]. These results reveal 
a specific role for Treg cells in inflammation resolution and tissue repair. 

In recent years, studies have appeared confirming that Treg cells releasing IL-10 are activated under the 
influence of probiotics. After oral administration, probiotic bacteria interact with intestinal epithelial cells or 
lamina propria immune cells through Toll-like receptors and induce the production of various cytokines or 
chemokines. Macrophage MCP-1, produced by epithelial cells, activates intestinal immune cells, which is 
accompanied by an increase in the production of immunoglobulin A and activation of T cells. 

In addition, probiotics strengthen the intestinal barrier by increasing the amount of mucins, tight junction 
proteins, and goblet and paneth cells, limiting the translocation of the intestinal microflora [83]. Another 
suggested mechanism of action for probiotics is to modulate intestinal microbiota by maintaining balance and 
inhibiting the growth of potential pathogenic bacteria in the intestinal tract. It has been shown that probiotic 
bacteria and their cell walls have an important immunoregulatory effect on the immune system of the mucous 
membranes without changing the homeostatic environment, but with an increase in the number of cells 
producing immunoglobulin A (IgA) and innate immunity cells (MF), thereby improving the functioning of the 
immune system. MF and DC play an important role in this immune response, without causing an inflammatory 
process, but only slightly increasing the cell infiltration of the lamina propria [84]. 

Thus, probiotics, affecting the microbiome and intestinal permeability, affect the activity of the 
inflammatory process in the pancreas, preventing the activation of the infectious process caused by the 
translocation of microflora. 

NK cells, in the pathogenesis of AP has become increasingly clear and significant. While promoting damage 
to the pancreas, these innate immune cells also interact with each other and adaptive immune cells to form a 
vast regulatory network. Starting with abnormal trypsinogen activation and self-digestion, some patients 
experience a transition from local inflammation of the pancreas to systemic inflammation with multiple organ 
dysfunction and sepsis. 

Unfortunately, the current understanding of the pathogenesis of AP is still far from an accurate idea of how 
long it takes from the onset of the disease and which parts of the immune system should be affected in order to 
interrupt the chain of life-threatening immune responses.  

At the same time, it has been shown that with the help of pharmacological preparations, it was possible to 
alleviate the course of AP and, in some cases, prevent the development of fatal complications [10]. 

CONCLUSION 

The pathophysiological processes underlying acute pancreatitis are quite complex, but more and more 
research shows that infiltrating cells of the innate immune system, including macrophages, neutrophils, 
dendritic cells and labrocytes, play a critical role in its pathogenesis and determine the severity of the disease. 
Establishing the relationship between inflammatory, immune responses and signaling pathways is becoming an 
important factor in understanding the development and progression of pancreatitis. It is likely that, based on the 
knowledge of these mechanisms, targeted therapies targeting immune cells and their associated inflammatory 
mediators will be proposed in the future, which can either stop or reverse the progression of the disease and 
improve prognosis. Among other things, it is assumed that the use of immunomodulatory drugs will help alleviate 
the course of acute pancreatitis and, in some cases, prevent the development of fatal complications [10]. 
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